Publications by authors named "Anastasia Rudik"

The accurate prediction of secondary structures of proteins (SSPs) is a critical challenge in molecular biology and structural bioinformatics. Despite recent advancements, this task remains complex and demands further exploration. This study presents a novel approach to SSP prediction using atom-centric substructural multilevel neighborhoods of atoms (MNA) descriptors for protein molecular fragments.

View Article and Find Full Text PDF

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.

View Article and Find Full Text PDF

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.

View Article and Find Full Text PDF

The metagenome of bacteria colonizing the human intestine is a set of genes that is almost 150 times greater than the set of host genes. Some of these genes encode enzymes whose functioning significantly expands the number of potential pathways for xenobiotic metabolism. The resulting metabolites can exhibit activity different from that of the parent compound.

View Article and Find Full Text PDF

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.

View Article and Find Full Text PDF

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases.

View Article and Find Full Text PDF

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection remains one of the most severe problems for humanity, particularly due to the development of HIV resistance. To evaluate an association between viral sequence data and drug combinations and to estimate an effect of a particular drug combination on the treatment results, collection of the most representative drug combinations used to cure HIV and the biological data on amino acid sequences of HIV proteins is essential. We have created a new, freely available web database containing 1,651 amino acid sequences of HIV structural proteins [reverse transcriptase (RT), protease (PR), integrase (IN), and envelope protein (ENV)], treatment history information, and CD4+ cell count and viral load data available by the user's query.

View Article and Find Full Text PDF

Most drug-like compounds can interact with several pharmacological targets and exhibit complex biological activity spectra. Analysis of these spectra helps find and optimize new pharmaceutical agents or identify new uses for approved and investigational drugs (drug repurposing). Since most pharmaceuticals usually undergo biotransformation in the human body, it is reasonable during drug discovery to take into account biological activity spectra of metabolites.

View Article and Find Full Text PDF

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required.

View Article and Find Full Text PDF

Motivation: Identification of new molecules promising for treatment of HIV-infection and HIV-associated disorders remains an important task in order to provide safer and more effective therapies. Utilization of prior knowledge by application of computer-aided drug discovery approaches reduces time and financial expenses and increases the chances of positive results in anti-HIV R&D. To provide the scientific community with a tool that allows estimating of potential agents for treatment of HIV-infection and its comorbidities, we have created a freely-available web-resource for prediction of relevant biological activities based on the structural formulae of drug-like molecules.

View Article and Find Full Text PDF

Drug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME).

View Article and Find Full Text PDF

Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets.

View Article and Find Full Text PDF

Background: Phenazepam (bromdihydrochlorphenylbenzodiazepine) is the original Russian benzodiazepine tranquilizer belonging to 1,4-benzodiazepines. There is still limited knowledge about phenazepam's metabolic liver pathways and other pharmacokinetic features.

Methods: To determine phenazepam's metabolic pathways, the study was divided into three stages: in silico modeling, in vitro experiment (cell culture study), and in vivo confirmation.

View Article and Find Full Text PDF

In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL.

View Article and Find Full Text PDF

Application of structure-activity relationships (SARs) for the prediction of adverse effects of drugs (ADEs) has been reported in many published studies. Training sets for the creation of SAR models are usually based on drug label information which allows for the generation of data sets for many hundreds of drugs. Since many ADEs may not be related to drug consumption, one of the main problems in such studies is the quality of data on drug-ADE pairs obtained from labels.

View Article and Find Full Text PDF

Motivation: Identification of rodent carcinogens is an important task in risk assessment of chemicals. SAR methods were proposed to reduce the number of animal experiments. Most of these methods ignore information about organ-specificity of tumorigenesis.

View Article and Find Full Text PDF

A new freely available web-application MetaTox ( http://www.way2drug.com/mg ) for prediction of xenobiotic's metabolism and calculation toxicity of metabolites based on the structural formula of chemicals has been developed.

View Article and Find Full Text PDF

Background: The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms.

View Article and Find Full Text PDF

Unlabelled: A new freely available web server site of metabolism predictor to predict the sites of metabolism (SOM) based on the structural formula of chemicals has been developed. It is based on the analyses of 'structure-SOM' relationships using a Bayesian approach and labelled multilevel neighbourhoods of atoms descriptors to represent the structures of over 1000 metabolized xenobiotics. The server allows predicting SOMs that are catalysed by 1A2, 2C9, 2C19, 2D6 and 3A4 isoforms of cytochrome P450 and enzymes of the UDP-glucuronosyltransferase family.

View Article and Find Full Text PDF

A new ligand-based method for the prediction of sites of metabolism (SOMs) for xenobiotics has been developed on the basis of the LMNA (labeled multilevel neighborhoods of atom) descriptors and the PASS (prediction of activity spectra for substances) algorithm and applied to predict the SOMs of the 1A2, 2C9, 2C19, 2D6, and 3A4 isoforms of cytochrome P450. An average IAP (invariant accuracy of prediction) of SOMs calculated by the leave-one-out cross-validation procedure was 0.89 for the developed method.

View Article and Find Full Text PDF

Summary: Experimentally found gene expression profiles are used to solve different problems in pharmaceutical studies, such as drug repositioning, resistance, toxicity and drug-drug interactions. A special web service, DIGEP-Pred, for prediction of drug-induced changes of gene expression profiles based on structural formulae of chemicals has been developed. Structure-activity relationships for prediction of drug-induced gene expression profiles were determined by Prediction of Activity Spectra for Substances (PASS) software.

View Article and Find Full Text PDF