In this work, we provide a detailed microscopic picture of the behavior of benzoic acid at the aqueous solution/vapor interface in its neutral as well as in its dissociated form (benzoate). This is achieved through a combination of highly surface-sensitive X-ray photoelectron spectroscopy experiments and fully atomistic molecular simulations. We show that significant changes occur in the interface behavior of the neutral acid upon release of the proton.
View Article and Find Full Text PDFIn this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration.
View Article and Find Full Text PDFWe investigated the effects of K(+) and Na(+) ions on the formation of α-cyclodextrin complexes with ionized aromatic carboxylic acids. Using solution calorimetry and (1)H NMR, we performed the thermodynamic and structural investigation of α-cyclodextrin complex formation with benzoic and nicotinic acids in different aqueous solutions containing K(+) and Na(+) ions as well as in pure water. The experiments show that the addition of sodium ions to solution leads to a decrease in the binding constants of the carboxylic acids with α-cyclodextrin as compared to pure water and solutions containing potassium ions.
View Article and Find Full Text PDF