The separation of light alkanes is one of the most important tasks for modern industry due to the widespread use of ethane and propane as chemical feedstocks. Their extraction from natural gas is a challenging task and is now carried out by cryogenic distillation at a limited number of plants around the world. The development of new materials for adsorption separation is therefore important.
View Article and Find Full Text PDFThe stability of a photoactivated isonitrosyl state was boosted by confining a pre-designed bicarboxylate ligand with a ruthenium nitrosyl fragment in a 2D metal-organic framework. The novel Zn/Ru-based MOF, {Zn[RuNO(HO)(inic)(OH)]}·12HO (inic = isonicotinate), was obtained with enhanced isonitrosyl stability by 30 K (up to 200 K) compared to the related ruthenium-only complex.
View Article and Find Full Text PDFIn contrast to aromatic carboxylates, the coordination polymers based on their perfluorinated analogues are not numerous. Here we present a series of six Zn(ii) coordination polymers of different dimensionalities (1D, 2D, and 3D) and porosities based on octafluorobiphenyl-4,4'-dicarboxylate (oFBPDC) and N-containing co-ligands (ur, dabco, and bpy). These complexes are characterized by single-crystal X-ray diffraction, PXRD, FT-IR, elemental analysis, and TGA.
View Article and Find Full Text PDFInclusion compounds of photoluminescent hexamolybdenum cluster complexes in the chromium terephthalate metal-organic framework, MIL-101 (MIL, Matérial Institut Lavoisier) were successfully synthesized in two different ways and characterized by means of powder X-Ray diffraction, chemical analysis and nitrogen sorption. Some important functional properties of hexamolybdenum cluster complexes for biological and medical applications, in particular singlet oxygen generation ability, luminescence properties, cellular uptake behavior and cytotoxicity were studied. It was revealed that the inclusion compounds possessed significant singlet oxygen generation activity.
View Article and Find Full Text PDF