Publications by authors named "Anastasia Felker"

Article Synopsis
  • Transgenesis is a key genetic technique, and the use of Tol2-based systems with Gateway vectors has improved zebrafish transgenesis, making it easier to use.
  • The authors developed new tools for testing gene regulatory elements and expanded the color options for transgenic research by introducing vectors with various fluorophores.
  • They also created specific transgenesis markers for the zebrafish pineal gland that work before and after hatching, which can be applied to other species like cavefish, enhancing the versatility of their transgenic applications.
View Article and Find Full Text PDF

The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood.

View Article and Find Full Text PDF

Bcl9 and Pygopus (Pygo) are obligate Wnt/β-catenin cofactors in , yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, β-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the β-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators.

View Article and Find Full Text PDF

Background: Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs.

View Article and Find Full Text PDF

The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear.

View Article and Find Full Text PDF

During development, mesodermal progenitors from the first heart field (FHF) form a primitive cardiac tube, to which progenitors from the second heart field (SHF) are added. The contribution of FHF and SHF progenitors to the adult zebrafish heart has not been studied to date. Here we find, using genetic tbx5a lineage tracing tools, that the ventricular myocardium in the adult zebrafish is mainly derived from tbx5a cells, with a small contribution from tbx5a SHF progenitors.

View Article and Find Full Text PDF

CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos.

View Article and Find Full Text PDF

Mutant Estrogen Receptor (ERT2) ligand-binding domain fusions with Cre recombinase are a key tool for spatio-temporally controlled genetic recombination with the Cre/lox system. CreERT2 is efficiently activated in a concentration-dependent manner by the Tamoxifen metabolite trans-4-OH-Tamoxifen (trans-4-OHT). Reproducible and efficient Cre/lox experimentation is hindered by the gradual loss of CreERT2 induction potency upon prolonged storage of dissolved trans-4-OHT, which potentially results from gradual trans-to-cis isomerization or degradation.

View Article and Find Full Text PDF

The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood).

View Article and Find Full Text PDF

Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors.

View Article and Find Full Text PDF