CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al.
View Article and Find Full Text PDFHeterosynaptic plasticity, along with Hebbian homosynaptic plasticity, is an important mechanism ensuring the stable operation of learning neuronal networks. However, whether heterosynaptic plasticity occurs in the whole brain in vivo, and what role(s) in brain function in vivo it could play, remains unclear. Here, we used an optogenetics approach to apply a model of intracellular tetanization, which was established and employed to study heterosynaptic plasticity in brain slices, to study the plasticity of response properties of neurons in the mouse visual cortex in vivo.
View Article and Find Full Text PDFGene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K channels has been proposed as a treatment due to the outstanding ability of K channels to hyperpolarize neurons. However, the effects of K channel overexpression on cell physiology remain to be investigated.
View Article and Find Full Text PDFThe role of astrocytes in modulating synaptic plasticity is an important question that until recently was not addressed due to limitations of previously existing technology. In the present study, we took an advantage of optogenetics to specifically activate astrocytes in hippocampal slices in order to study effects on synaptic function. Using the AAV-based delivery strategy, we expressed the ionotropic channelrhodopsin-2 (ChR2) or the metabotropic Gq-coupled Opto-a1AR opsins specifically in hippocampal astrocytes to compare different modalities of astrocyte activation.
View Article and Find Full Text PDFOptogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity.
View Article and Find Full Text PDFIn the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes' activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals.
View Article and Find Full Text PDFSeveral pharmacological, dietary, and genetic interventions that increase mammalian lifespan are known, but general principles of lifespan extension remain unclear. Here, we performed RNA sequencing (RNA-seq) analyses of mice subjected to 8 longevity interventions. We discovered a feminizing effect associated with growth hormone regulation and diminution of sex-related differences.
View Article and Find Full Text PDFIt is widely accepted that memory consolidation requires de-novo transcription of memory-related genes. Epigenetic modifications, particularly histone acetylation, may facilitate gene transcription, but their potential molecular targets are poorly characterized. In the current study, we addressed the question of epigenetic control of atypical protein kinases (aPKC) that are critically involved in memory consolidation and maintenance.
View Article and Find Full Text PDFIn the mammalian myocardium, ACh, which is the main neurotransmitter of cardiac parasympathetic postganglionic fibres, can be released via both quantal (vesicular) and non-quantal (non-vesicular) mechanisms of secretion. Non-quantal release is continuous and independent of vagus activity and exocytosis of ACh-containing vesicles. During the incubation of myocardium in the presence of acetylcholinesterase (AChE) inhibitors, non-quantal ACh release leads to accumulation of ACh in the myocardium and cholinergic effects, which are proportional to the intensity of non-quantal secretion.
View Article and Find Full Text PDFAims: In mammalian myocardium acetylcholine (ACh), neurotransmitter which strikingly affects the cardiomyocytes, can be released from the neurons both via quantal (vesicular) and nonquantal (non-vesicular) mechanism of secretion. Non-quantal release is continuous, independent on vagus activity and provides accumulation of ACh in myocardium in the presence of acetylcholinesterase (AChE) inhibitors. The aim of the present study was to determine the source of non-quantal ACh in isolated atrial myocardium of adult and newborn rats.
View Article and Find Full Text PDFEffects of organophosphorous acetylcholinesterase inhibitor paraoxon were studied in the isolated atrial and ventricular myocardium preparations of a fish (cod), an amphibian (frog) and a mammal (rat) using the microelectrode technique. Incubation of isolated atrium with paraoxon (5 × 10(-6)-5 × 10(-5) M) caused significant reduction of action potential duration and marked slowing of sinus rhythm. These effects were abolished by muscarinic blocker atropine and therefore are caused by acetylcholine, which accumulates in the myocardium due to acetylcholinesterase inhibition even in the absence of vagal input.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) inhibitors provoke typical cholinergic effects in the isolated right atrium of the rat due to the accumulation of acetylcholine (ACh). Our study was designed to show that in the absence of vagal impulse activity, ACh is released from the parasympathetic nerve fibres by means of non-quantal secretion. The conventional microelectrode technique was used to study changes in action potential (AP) configuration in the right atrium preparation of rats during application of AChE inhibitors.
View Article and Find Full Text PDF