Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan.
View Article and Find Full Text PDFInspired by the goal to create a biosensor with designer specificity for real-time detection of unlabeled analytes in a flow-through mode, we designed a miniature flow cell with interchangeable quartz window carrying immobilized aptamer/quantum dot molecular switches as a part of a portable fluorescent setup. The inner surface of the 1.5mm ID, 12µl flow cell quartz window has been modified with the aptamer sensing complexes containing highly-fluorescent quantum dots.
View Article and Find Full Text PDFThe goal of this work was to develop and test a novel real-time biosensing approach which can be adapted to either environmental or clinical monitoring of biological pathogens. We have developed a working prototype of a real-time aptamer-based fluorescent flow sensor. The sensor utilizes a competitive displacement approach to measure the binding of the analyte, which keeps the nonspecific binding below detectable levels.
View Article and Find Full Text PDFA novel reagentless direct electrochemical DNA sensor has been developed using ultrathin films of the conducting polymer polypyrrole doped with an oligonucleotide probe. Our goal was to develop a prototype electrochemical DNA sensor for detection of a biowarfare pathogen, variola major virus. The sensor has been optimized for higher specificity and sensitivity.
View Article and Find Full Text PDF