Publications by authors named "Anastasia Belyaeva"

Drug treatment of glioblastoma, the most aggressive and widespread form of brain cancer, is complicated due to the difficulty of penetration of chemotherapeutic drugs through the blood-brain barrier (BBB). Moreover, with surgical removal of tumors, in 90 % of cases they reappear near the original focus. To solve this problem, we propose to use hydrogel based on cellulose nanocrystals grafted with poly(N-isopropylacrylamide) (CNC-g-PNIPAM) as a promising material for filling postoperative cavities in the brain with the release of antitumor drugs.

View Article and Find Full Text PDF

Hypothesis: Hydrogels based on cellulose nanocrystals (CNC) have attracted great interest because of their sustainability, biocompatibility, mechanical strength and fibrillar structure. Gelation of colloidal particles can be induced by the introduction of polymers. Existing examples include gels based on CNC and derivatives of cellulose or poly(vinyl alcohol), however, gel structure and their application for extrusion printing were not shown.

View Article and Find Full Text PDF

Mixtures of aqueous solutions of chitosan hydrochloride (CS·HCl, 1-4 wt.%) and Pluronic F-127 (Pl F-127, 25 wt.%) were studied using vibrational and rotational viscometry; the optimal aminopolysaccharide concentration (3 wt.

View Article and Find Full Text PDF

The development of universal methods to synthesize materials with different structures is always in the researchers' focus. Despite the fact that various structures based on magnetite have already been obtained, synthetic approaches that allow to synthesize materials with a wide range of texture and functional properties are still very poorly presented. In this work, we demonstrate that a stable magnetite hydrosol can be easily converted into monolithic structures of xero-, cryo- and aerogel by careful varying concentrations and drying conditions.

View Article and Find Full Text PDF

In this work, the mechanism of chlorine dioxide's (ClO) interaction with aerogel surfaces is described for the first time. To determine the mechanism, three types of aerogels (namely, silica, titania, and zirconia composites) were synthesized and characterized using N sorption isotherm analysis, X-ray diffraction analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The kinetics of the ClO interaction mechanism was investigated ClO-controlled sorption and desorption at different temperatures.

View Article and Find Full Text PDF