Publications by authors named "Anastasia Arkhipova"

Introduction: This study explores the differences between the patterns of bone defects associated with vertical root fracture (VRF) and apical periodontitis (AP) in single-rooted endodontically treated premolars (SRETPs) based on cone-beam computed tomography (CBCT) data.

Methods: Eighty-four SRETPs were extracted and categorized into the VRF and AP groups. On preoperative CBCT images, the location of bone defects according to the root thirds in buccolingual and mesiodistal directions across the study groups were compared.

View Article and Find Full Text PDF

The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid-liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies.

View Article and Find Full Text PDF

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in grown using a specially developed device aboard the International Space Station. The morphology and metabolism of grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation.

View Article and Find Full Text PDF

Bioengineered scaffolds are crucial components in artificial tissue construction. In general, these scaffolds provide inert three-dimensional (3D) surfaces supporting cell growth. However, some scaffolds can affect the phenotype of cultured cells, especially, adherent stromal cells, such as fibroblasts.

View Article and Find Full Text PDF

The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration.

View Article and Find Full Text PDF

Neural transplantation is a promising modality for treatment of neurodegenerative diseases, traumatic brain injury and stroke. Biocompatible scaffolds with optimized properties improve the survival of transplanted neural cells and differentiation of progenitor cells into the desired types of neurons. Silk fibroin is a biocompatible material for tissue engineering.

View Article and Find Full Text PDF

Unlabelled: The present study aimed to assess the influence of centrifugation and inoculation time on the number, distribution, and viability of intratubular bacteria and surface monospecies E. faecalis biofilm.

Materials And Methods: Forty-four semicylindrical specimens cut from primary (n = 22) and permanent (n = 22) bovine teeth were randomly assigned to the experimental groups.

View Article and Find Full Text PDF

Previously, we have described the preparation of a novel fibroin methacrylamide (FbMA), a polymer network with improved functionality, capable of photocrosslinking into Fb hydrogels with elevated stiffness. However, it was unclear how this new functionality affects the structure of the material and its beta-sheet-associated crystallinity. Here, we show that the proposed method of Fb methacrylation does not disturb the protein's ability to self-aggregate into the stable beta-sheet-based crystalline domains.

View Article and Find Full Text PDF

Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various models of wound healing. The effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds.

View Article and Find Full Text PDF

Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity.

View Article and Find Full Text PDF