Direction selectivity in the retina requires the asymmetric wiring of inhibitory inputs onto four subtypes of On-Off direction-selective ganglion cells (DSGCs), each preferring motion in one of four cardinal directions. The primary model for the development of direction selectivity is that patterned activity plays an instructive role. Here, we use a unique, large-scale multielectrode array to demonstrate that DSGCs are present at eye opening, in mice that have been reared in darkness and in mice that lack cholinergic retinal waves.
View Article and Find Full Text PDFThe metric structure of synaptic connections is obviously an important factor in shaping the properties of neural networks, in particular the capacity to retrieve memories, with which are endowed autoassociative nets operating via attractor dynamics. Qualitatively, some real networks in the brain could be characterized as 'small worlds', in the sense that the structure of their connections is intermediate between the extremes of an orderly geometric arrangement and of a geometry-independent random mesh. Small worlds can be defined more precisely in terms of their mean path length and clustering coefficient; but is such a precise description useful for a better understanding of how the type of connectivity affects memory retrieval? We have simulated an autoassociative memory network of integrate-and-fire units, positioned on a ring, with the network connectivity varied parametrically between ordered and random.
View Article and Find Full Text PDF