Analytical engines rely on in-memory data caching to avoid storage accesses and provide timely responses by keeping the most frequently accessed data in memory. Purely frequency- and time-based caching decisions, however, are a proxy of the expected query execution speedup only when storage accesses are significantly slower than in-memory query processing. On the other hand, fast storage offers loading times that approach fully in-memory query response times, rendering purely frequency-based statistics incapable of capturing the impact of a caching decision on query execution.
View Article and Find Full Text PDFUnlabelled: We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.
View Article and Find Full Text PDF