Publications by authors named "Anastasia A Chugunova"

Article Synopsis
  • Williams-Beuren syndrome (WBS) is caused by a deletion of genes on chromosome 7, leading to a variety of health issues due to protein malfunction.
  • The role of the protein methyltransferase WBSCR27 in WBS remains unclear, prompting researchers to create gene knockout mouse cell lines to identify its methylation targets.
  • Through structural analysis, they discovered that WBSCR27 has a characteristic Class I methyltransferase structure, and binding to S-adenosyl-L-homocysteine (SAH) helps form a substrate binding site, suggesting areas for future investigation.
View Article and Find Full Text PDF

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs.

View Article and Find Full Text PDF

Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides.

View Article and Find Full Text PDF
Article Synopsis
  • Telomerase elongates single-stranded DNA at chromosome ends, crucial for preserving genome integrity in eukaryotes.
  • Abnormal telomerase activity can cause uncontrolled cell division, while reduced activity is linked to aging and cell death-related diseases.
  • This study presents the structures of the N-terminal domain of telomerase's catalytic subunit from a heat-tolerant yeast, revealing how its residues interact with telomerase RNA and influence heteroduplex size during DNA synthesis.
View Article and Find Full Text PDF

N6-methyladenosine (m(6)A) is ubiquitously present in the RNA of living organisms from Escherichia coli to humans. Methyltransferases that catalyze adenosine methylation are drastically different in specificity from modification of single residues in bacterial ribosomal or transfer RNA to modification of thousands of residues spread among eukaryotic mRNA. Interactions that are formed by m(6)A residues range from RNA-RNA tertiary contacts to RNA-protein recognition.

View Article and Find Full Text PDF