Sensors (Basel)
December 2022
In this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric transmitters and receivers.
View Article and Find Full Text PDFSensors (Basel)
November 2022
Passive technologies, including intelligent reflecting surfaces (IRS), are gaining traction thanks to their ability to enhance communication systems while maintaining minimal cost and low complexity. They can assist a wireless sensor network (WSN) by achieving low power requirements for sensors and aid communication needs in many applications, for instance, environmental monitoring. In this paper, we propose an IRS-equipped WSN which describes sensors equipped with IRSs instead of active radio frequency (RF) electronics.
View Article and Find Full Text PDFLight-fidelity (LiFi) is a light-based wireless communication technology which can complement radio-frequency (RF) communication technologies for indoor applications. Although LiFi signals are spatially more contained than RF signals, the broadcasting nature of LiFi also makes it susceptible to eavesdropping. Therefore, it is important to secure the transmitted data against potential eavesdroppers.
View Article and Find Full Text PDFFor circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation.
View Article and Find Full Text PDFA demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment.
View Article and Find Full Text PDF