Publications by authors named "Anas Abunada"

Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles.

View Article and Find Full Text PDF

Particle separation is essential in a broad range of systems and has several biological applications. Microfluidics has emerged as a potentially transformational method for particle separation. The approach manipulates and separates particles at the micrometer scale by using well-defined microstructures and precisely managed force fields.

View Article and Find Full Text PDF

Dielectrophoresis-field flow fractionation (DEP-FFF) has emerged as an efficient in-vitro, non-invasive, and label-free mechanism to manipulate a variety of nano- and micro-scaled particles in a continuous-flow manner. The technique is mainly used to fractionate particles/cells based on differences in their sizes and/or dielectric properties by employing dielectrophoretic force as an external force field applied perpendicular to the flow direction. The dielectrophoretic force is the result of a spatially non-uniform electric field in the microchannel that can be generated either by exploiting microchannel geometry or using special arrangements of microelectrode arrays.

View Article and Find Full Text PDF

This short communication introduces a continuous-flow, dielectrophoresis-based lateral fluid flow fractionation microdevice for detection/isolation of circulating tumor cells in the presence of other haematological cells. The device utilizes two sets of planar interdigitated transducer electrodes micropatterned on top of a glass wafer using standard microfabrication techniques. A microchannel with a single inlet and two outlets, realized in polydimethylsiloxane, is bonded on the glass substrate.

View Article and Find Full Text PDF