The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP.
View Article and Find Full Text PDFIn real-life applications, nonlinear differential equations play an essential role in representing many phenomena. One well-known nonlinear differential equation that helps describe and explain many chemicals, physical, and biological processes is the Caudrey Dodd Gibbon equation (CDGE). In this paper, we propose the Laplace residual power series method to solve fractional CDGE.
View Article and Find Full Text PDFIn this paper, two problems involving nonlinear time fractional hyperbolic partial differential equations (PDEs) and time fractional pseudo hyperbolic PDEs with nonlocal conditions are presented. Collocation technique for shifted Chebyshev of the second kind with residual power series algorithm (CTSCSK-RPSA) is the main method for solving these problems. Moreover, error analysis theory is provided in detail.
View Article and Find Full Text PDFAn unsteady convection-radiation interaction flow of power-law non-Newtonian nanofluids using the time-fractional derivative is examined. The flow domain is an enclosure that has a free surface located at the top boundaries. Also, the geometry is filled by aluminum foam as a porous medium and the overall thermal conductivity as well as the heat capacity are approximated using a linear combination of the properties of the fluid and porous phases.
View Article and Find Full Text PDF