The transcription factor ZFH-2 has well-documented roles in Drosophila neurogenesis and other developmental processes. Here we provide the first evidence that ZFH-2 has a role in oogenesis. We demonstrate that ZFH-2 is expressed in the wild-type ovary and that a loss of zfh-2 function produces a mutant ovary phenotype where egg chambers are reduced in number and fused.
View Article and Find Full Text PDFApoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII.
View Article and Find Full Text PDFNociception is an evolutionarily conserved mechanism to encode and process harmful environmental stimuli. Like most animals, Drosophila melanogaster larvae respond to a variety of nociceptive stimuli, including noxious touch and temperature, with stereotyped escape responses through activation of multimodal nociceptors. How behavioral responses to these different modalities are processed and integrated by the downstream network remains poorly understood.
View Article and Find Full Text PDFThe evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to HO sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not.
View Article and Find Full Text PDFDrosophila melanogaster females are highly selective about the chemosensory quality of their egg-laying sites, an important trait that promotes the survival and fitness of their offspring. How egg-laying females respond to UV light is not known, however. UV is a well-documented phototactic cue for adult Drosophila, but it is an aversive cue for larvae.
View Article and Find Full Text PDFSelecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. Although their choosiness toward egg-laying sites is well documented, the specific neural mechanism that activates females' search for attractive egg-laying sites is not known. Here, we show that distention and contraction of females' internal reproductive tract triggered by egg delivery through the tract plays a critical role in activating such search.
View Article and Find Full Text PDF