Quantitative polymerase chain reaction (qPCR) is widely used in detection of nucleic acids, but existing methods either lack sequence-specific detection or are costly because they use chemically modified DNA probes. In this work, we apply a DNA aptamer and light-up dye-based chemistry for qPCR for nucleic acid quantification. In contrast to the conventional qPCR, in our method, we observe an exponential decrease in fluorescence upon DNA amplification.
View Article and Find Full Text PDFLignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate.
View Article and Find Full Text PDFThis study investigates the behavior and intracellular changes in Escherichia coli (model organism) during electro-oxidation with Ti/Sb-SnO/PbO anode in a chlorine free electrochemical system. Preliminary studies were conducted to understand the effect of initial E. coli concentration and applied current density on disinfection.
View Article and Find Full Text PDFThe morphological symmetry of the division process of Escherichia coli is well-known. Recent studies verified that, in optimal growth conditions, most divisions are symmetric, although there are exceptions. We investigate whether such morphological asymmetries in division introduce functional asymmetries between sister cells, and assess the robustness of the symmetry in division to mild chemical stresses and sub-optimal temperatures.
View Article and Find Full Text PDFThe fast adaptation of Escherichia coli to stressful environments includes the regulation of gene expression rates, mainly of transcription, by specific and global stress-response mechanisms. To study the effects of mechanisms acting on a global level, we observed with single molecule sensitivity the effects of mild acidic shift and oxidative stress on the in vivo transcription dynamics of a probe gene encoding an RNA target for MS2d-GFP, under the control of a synthetic promoter. After showing that this promoter is uninvolved in fast stress-response pathways, we compared its kinetics of transcript production under stress and in optimal conditions.
View Article and Find Full Text PDFMotivation: Cell division in Escherichia coli is morphologically symmetric. However, as unwanted protein aggregates are segregated to the cell poles and, after divisions, accumulate at older poles, generate asymmetries in sister cells' vitality. Novel single-molecule detection techniques allow observing aging-related processes in vivo, over multiple generations, informing on the underlying mechanisms.
View Article and Find Full Text PDFThe kinetics of transcription initiation in Escherichia coli depend on the duration of two rate-limiting steps, the closed and the open complex formation. In a lac promoter variant, P(lac/ara-1), the kinetics of these steps is controlled by IPTG and arabinose. From in vivo single-RNA measurements, we find that induction affects the mean and normalized variance of the intervals between consecutive RNA productions.
View Article and Find Full Text PDFIn Escherichia coli, tetracycline prevents translation. When subject to tetracycline, E. coli express TetA to pump it out by a mechanism that is sensitive, while fairly independent of cellular metabolism.
View Article and Find Full Text PDFIn vitro studies show that the transcriptional dynamics in Escherichia coli is sensitive to Mg(2+) concentration in the cell. We study in vivo how Mg(2+) affects the production of RNA molecules under the control of the lar promoter, P(lar), a lac promoter variant. The target RNA codes for RFP followed by 96 MS2d-GFP binding sites, allowing in vivo detection of individual RNA molecules following transcription.
View Article and Find Full Text PDFWe explore the effects of probabilistic RNA partitioning during cell division on the normalized variance of RNA numbers across generations of bacterial populations. We first characterize these effects in model cell populations, where gene expression is modeled as a delayed stochastic process, as a function of the synchrony in cell division, the rate of division, and the RNA degradation rate. We further explore the additional variance that arises if the partitioning is biased.
View Article and Find Full Text PDF