Many mutations in genes for ribosomal proteins (r-proteins) and assembly factors cause cell stress and altered cell fate, resulting in congenital diseases collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes and inhibiting ribosomal function.
View Article and Find Full Text PDFBackground: There is an urgent need for noninvasive, cost-effective biomarkers for Alzheimer's disease (AD), such as blood-based biomarkers. They will not only support the clinical diagnosis of dementia but also allow for timely pharmacological and nonpharmacological interventions and evaluations.
Objective: To identify and validate a novel blood-based microRNA biomarker for dementia of the Alzheimer's type (DAT).
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation.
View Article and Find Full Text PDFAbrogation of ribosome synthesis (ribosomal stress) leads to cell cycle arrest. However, the immediate cell response to cessation of ribosome formation and the transition from normal cell proliferation to cell cycle arrest have not been characterized. Furthermore, there are conflicting conclusions about whether cells are arrested in G2/M or G1, and whether the cause is dismantling ribosomal assembly per se, or the ensuing decreased number of translating ribosomes.
View Article and Find Full Text PDFWe describe a method called modular, early-tagged amplification (META) RNA profiling that can quantify a broad panel of microRNAs or mRNAs simultaneously across many samples and requires far less sequence depth than existing digital profiling technologies. The method assigns quantitative tags during reverse transcription to permit up-front sample pooling before competitive amplification and deep sequencing. This simple, scalable and inexpensive approach improves the practicality of large-scale gene expression studies.
View Article and Find Full Text PDFThe biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood.
View Article and Find Full Text PDFTake a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size.
View Article and Find Full Text PDFThe macrolide erythromycin binds to the large subunit of the prokaryotic ribosome near the peptidyltransferase center (PTC) and inhibits elongation of new peptide chains beyond a few amino acids. Nucleotides A2058 and A2059 (E. coli numbering) in 23S rRNA play a crucial role in the binding of erythromycin, and mutation of nucleotide A2058 confers erythromycin resistance in both gram-positive and gram-negative bacteria.
View Article and Find Full Text PDF