Purpose: An automated, in-vivo system to detect patient anatomy changes and machine output was developed using novel analysis of in-vivo electronic portal imaging device (EPID) images for every fraction of treatment on a Varian Halcyon. In-vivo approach identifies errors that go undetected by routine quality assurance (QA) to compliment daily machine performance check (MPC), with minimal physicist workload.
Methods: Images for all fractions treated on a Halcyon were automatically downloaded and analyzed at the end of treatment day.
Range uncertainty remains a big concern in particle therapy, as it may cause target dose degradation and normal tissue overdosing. Positron emission tomography (PET) and prompt gamma imaging (PGI) are two promising modalities for range verification. However, the relatively long acquisition time of PET and the relatively low yield of PGI pose challenges for real-time range verification.
View Article and Find Full Text PDF