Publications by authors named "Ananta Nair"

We present a theory and neural network model of the neural mechanisms underlying human decision-making. We propose a detailed model of the interaction between brain regions, under a proposer-predictor-actor-critic​ ​framework. This theory is based on detailed animal data and theories of action-selection.

View Article and Find Full Text PDF

We describe a neurobiologically informed computational model of phasic dopamine signaling to account for a wide range of findings, including many considered inconsistent with the simple reward prediction error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value (LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory projections) and phasic pausing for expected USs (via the lateral habenula).

View Article and Find Full Text PDF

We address the distinction between habitual/automatic vs. goal-directed/controlled behavior, from the perspective of a computational model of the frontostriatal loops. The model exhibits a continuum of behavior between these poles, as a function of the interactive dynamics among different functionally-specialized brain areas, operating iteratively over multiple sequential steps, and having multiple nested loops of similar decision making circuits.

View Article and Find Full Text PDF