Publications by authors named "Anant Agarwal"

The failure mechanism of thermal gate oxide in silicon carbide (SiC) power metal oxide semiconductor field effect transistors (MOSFETs), whether it is field-driven breakdown or charge-driven breakdown, has always been a controversial topic. Previous studies have demonstrated that the failure time of thermally grown silicon dioxide (SiO) on SiC stressed with a constant voltage is indicated as charge driven rather than field driven through the observation of Weibull Slope β. Considering the importance of the accurate failure mechanism for the thermal gate oxide lifetime prediction model of time-dependent dielectric breakdown (TDDB), charge-driven breakdown needs to be further fundamentally justified.

View Article and Find Full Text PDF

The body diode degradation in SiC power MOSFETs has been demonstrated to be caused by basal plane dislocation (BPD)-induced stacking faults (SFs) in the drift region. To enhance the reliability of the body diode, many process and structural improvements have been proposed to eliminate BPDs in the drift region, ensuring that commercial SiC wafers for 1.2 kV devices are of high quality.

View Article and Find Full Text PDF

Introduction: The elbow pain and restricted movement is a nagging problem and elbow arthropathies need to be excluded. On rare instances, uncommon etiology like a benign lesion is the culprit and the diagnosis would require judicious clinicoradiological correlation. Osteoid osteoma in the intra- or juxta-articular region is reported in the literature as rare, sporadic report.

View Article and Find Full Text PDF

A new cell topology named the dodecagonal (a polygon with twelve sides, short for Dod) cell is proposed to optimize the gate-to-drain capacitance (Cgd) and reduce the specific ON-resistance (Ron,sp) of 4H-SiC planar power MOSFETs. The Dod and the octagonal (Oct) cells are used in the layout design of the 650 V SiC MOSFETs in this work. The experimental results confirm that the Dod-cell MOSFET achieves a 2.

View Article and Find Full Text PDF

650 V SiC planar MOSFETs with various JFET widths, JFET doping concentrations, and gate oxide thicknesses were fabricated by a commercial SiC foundry on two six-inch SiC epitaxial wafers. An orthogonal P+ layout was used for the 650 V SiC MOSFETs to reduce the ON-resistance. The devices were packaged into open-cavity TO-247 packages for evaluation.

View Article and Find Full Text PDF