Therapeutics enhancing apolipoprotein (APOE) positive function are a priority, because is the major genetic risk factor for Alzheimer's disease (AD). The function of APOE, the key constituent of lipoprotein particles that transport cholesterol and lipids in the brain, is dependent on lipidation by ABCA1, a cell-membrane cholesterol transporter. ABCA1 transcription is regulated by liver X receptors (LXR): agonists have been shown to increase ABCA1, often accompanied by unwanted lipogenesis and elevated triglycerides (TG).
View Article and Find Full Text PDFp97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis.
View Article and Find Full Text PDFArsenic is an environmental toxicant that significantly enhances the risk of developing disease, including several cancers. While the epidemiological evidence supporting increased cancer risk due to chronic arsenic exposure is strong, therapies tailored to treat exposed populations are lacking. This can be accredited in large part to the chronic nature and pleiotropic pathological effects associated with prolonged arsenic exposure.
View Article and Find Full Text PDFEnhancing the intracellular labile iron pool (LIP) represents a powerful, yet untapped strategy for driving ferroptotic death of cancer cells. Here, we show that NRF2 maintains iron homeostasis by controlling HERC2 (E3 ubiquitin ligase for NCOA4 and FBXL5) and VAMP8 (mediates autophagosome-lysosome fusion). knockout cells have low expression, leading to a simultaneous increase in ferritin and NCOA4 and recruitment of apoferritin into the autophagosome.
View Article and Find Full Text PDFA recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms.
View Article and Find Full Text PDFBackground And Aims: Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD.
Approach And Results: Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation.
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis.
View Article and Find Full Text PDFThe transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is often highly expressed in non-small cell lung cancer (NSCLC). Through its target genes, NRF2 enhances cancer progression and chemo/radioresistance, leading to a poorer prognosis in patients with high NRF2 expression. In this study, we identified CHM-like Rab escort protein (CHML; encoding Rep2) as an NRF2 target gene with an antioxidant response element (ARE) in its promoter region (-1622 to -1612).
View Article and Find Full Text PDFNuclear factor (erythroid-derived 2)-like 2 (NRF2) is a central regulator of cellular stress responses and its transcriptional activation promotes multiple cellular defense and survival mechanisms. The loss of NRF2 has been shown to increase oxidative and proteotoxic stress, two key pathological features of neurodegenerative disorders such as Parkinson's disease (PD). Moreover, compromised redox homeostasis and protein quality control can cause the accumulation of pathogenic proteins, including alpha-synuclein (α-Syn) which plays a key role in PD.
View Article and Find Full Text PDFIn this issue of Cell Chemical Biology, Kuang et al. (2021) identify microsomal glutathione-S-transferase 1 (MGST1) as an NRF2 target gene that suppresses ferroptosis in pancreatic cancer cells. Mechanistically, MGST1 binds ALOX5 during ferroptosis induction, inhibiting lipid peroxide production.
View Article and Find Full Text PDFAlthough it is known that aging affects neural stem progenitor cell (NSPC) biology in fundamental ways, the underlying dynamics of this process are not fully understood. Our previous work identified a specific critical period (CP) of decline in NSPC activity and function during middle age (13-15 months), and revealed the reduced expression of the redox-sensitive transcription factor, NRF2, as a key mediator of this process. Here, we investigated whether augmenting NRF2 expression could potentially mitigate the NSPC decline across the identified CP.
View Article and Find Full Text PDFRedox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging.
View Article and Find Full Text PDFFerroptosis is a non-apoptotic mode of regulated cell death that is iron and lipid peroxidation dependent. As new mechanistic insight into ferroptotic effectors and how they are regulated in different disease contexts is uncovered, our understanding of the physiological and pathological relevance of this mode of cell death continues to grow. Along these lines, a host of pharmacological modulators of this pathway have been identified, targeting proteins involved in iron homeostasis; the generation and reduction of lipid peroxides; or cystine import and glutathione metabolism.
View Article and Find Full Text PDFThe discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history.
View Article and Find Full Text PDFThe loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear.
View Article and Find Full Text PDFWhile environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction.
View Article and Find Full Text PDFIntracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear.
View Article and Find Full Text PDFMitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism - intramitochondrial quality control (IMQC) - is represented by conserved proteases distributed across mitochondrial compartments.
View Article and Find Full Text PDFGene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death.
View Article and Find Full Text PDFSignificance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS).
Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades.
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders.
View Article and Find Full Text PDFNeuroinflammation and apoptosis in the dopaminergic neurons of substantia nigra play an important role in the pathogenesis of experimental and clinical Parkinson's disease (PD). This study focused on the possible anti-inflammatory and anti-apoptotic effects of theaflavin (TF), a black tea polyphenol against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. C57BL/6 male mice were treated with 10 doses of MPTP (25 mg/kg, s.
View Article and Find Full Text PDF