Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH).
View Article and Find Full Text PDFThe electrode drying process (DP) is a crucial step in the lithium-ion battery manufacturing chain and plays a fundamental role in governing the performance of the cells. The DP is extremely complex, with the dynamics and their implication in the production of electrodes generally being poorly understood. To date, there is limited discussion of these processes in the literature due to the limitation of the existing metrology.
View Article and Find Full Text PDFThe volumetric liquid-solid (L-S) mass transfer coefficient under gas-liquid (G-L) two-phase flow in a silicon-chip-based micropacked bed reactor (MPBR) was studied using the copper dissolution method and was related to the reactor hydrodynamic behavior. Using a high-speed camera and a robust computational image analysis method that selectively analyzed the bed voidage around the copper particles, the observed hydrodynamics were directly related to the L-S mass transfer rates in the MPBR. This hydrodynamic study revealed different pulsing structures inside the packed copper bed depending on the flow patterns established preceding the packed bed upon increasing gas velocity.
View Article and Find Full Text PDFLiquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing.
View Article and Find Full Text PDFCapillary microseparators have been gaining interest in downstream unit operations, especially for pharmaceutical, space, and nuclear applications, offering efficient separation of two-phase flows. In this work, a detailed analysis of the dynamics of gas?liquid separation at the single meniscus level helped to formulate a model to map the operability region of microseparation devices. A water?nitrogen segmented flow was separated in a microfabricated silicon-glass device, with a main channel (width, W = 600 ?m; height, H = 120 ?m) leading into an array of 276 capillaries (100 ?m long; width = 5 ?m facing the main channel and 25 ?m facing the liquid outlet), on both sides of the channel.
View Article and Find Full Text PDFFlocculation is a key purification step in cell-based processes for the food and pharmaceutical industry where the removal of cells and cellular debris is aided by adding flocculating agents. However, finding the best suited flocculating agent and optimal conditions to achieve rapid and effective flocculation is a non-trivial task. In conventional analytical systems, turbulent mixing creates a dynamic equilibrium between floc growth and breakage, constraining the determination of floc formation rates.
View Article and Find Full Text PDFBackground: Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved.
View Article and Find Full Text PDF