The formation of secondary organic aerosols caused by atmospheric oxidation of isoprene is harmful to human health and the climate; thus, isoprene oxidation is further mandatory to obtain less harmful or harmless highly oxidised products. In this numerical investigation, 2-hydroperoxy-2-methylbut-3-en-1-ol (ISOPOOH) was considered the model compound to investigate the formation of three RO radicals (CHO, CHO and CHO) and two saturated highly oxidised products (CHO and CHO). The complete reaction network and its thermodynamics and kinetics were analysed to obtain the most probable and feasible reaction pathways.
View Article and Find Full Text PDFWater dissociation is an important reaction involved in many industrial processes. In this computational study, the dissociation of water is used as a model reaction for probing the activity of interfacial sites of globally optimized ZrO supported Pt and Rh clusters under the framework of density functional theory. Our findings demonstrate that the perimeter sites of these small clusters can activate water, but the dissociation behavior varies considerably between sites.
View Article and Find Full Text PDFUnprocessed bio-oils derived from the thermochemical conversion of lignocellulosic biomass suffer from low energy density primarily due to the presence of high amounts of oxygen functional groups. Therefore, the elimination of oxygen atoms over a suitable catalyst surface is viewed as one of the appropriate mechanisms for elevating the quality of bio-oils. Here, in this computational study, three oxygenated bio-oil model compounds, namely, 2-butenal, butan-2,3-diol, and butan-2,3-dione were considered as the representative compounds of the oxygenated catalogue of bio-oils.
View Article and Find Full Text PDFBio-oil produced from pyrolysis of lignocellulosic biomass consists of several hundreds of oxygenated compounds resulting in a very low quality with poor characteristics of low stability, low pH, low stability, low heating value, high viscosity, and so on. Therefore, to use bio-oil as fuel for vehicles, it needs to be upgraded using a promising channel. On the other hand, raw bio-oil can also be a good source of many specialty chemicals, e.
View Article and Find Full Text PDFXylose is an integral part of hemicellulose fraction of lignocellulosic biomass. Its abundance in the lignocellulose makes it a desirable component for converting into various value-added compounds. In this study, conversion of xylose to four linear alkanes has been discussed by five different schemes including their thermochemistry under the framework of density functional theory.
View Article and Find Full Text PDFExcessive amounts of oxy-functional groups in unprocessed bio-oil vitiate its quality as fuel; therefore, it has to be channelized to upgrading processes, and catalytic hydrodeoxygenation is one of the most suitable routes for the upgrading of crude bio-oil. In this computational work, catalytic hydrodeoxygenation (HDO) of guaiacol, which is an important phenolic compound of crude bio-oil, has been carried out using density functional theory (DFT) over a Pd(111) catalyst. The Pd(111) catalyst surface does not endorse direct eliminations of functional groups of guaiacol; however, it is found to perform excellently in stepwise dehydrogenation reactions of oxy-functionals of guaiacol according to present DFT results.
View Article and Find Full Text PDFIn the pyrolysis of Sphagnum moss species, p-isopropenylphenol (p-IPP) is a major product which has been considered in this density functional theory based computational study for its conversion to various products such as benzene, phenol, 4-propenylphenol, indan-5-ol, 4-propylcyclohexanone, 4-cyclopropylphenol, etc. In order to achieve these products, eight different reaction schemes are performed using B3LYP/6-311 + g (d,p) level of theory. Further, thermodynamic properties such as reaction free energies and reaction enthalpies associated with these eight reaction schemes are developed in the temperature range of 298-898 K.
View Article and Find Full Text PDFThe unprocessed bio-oil obtained by the pyrolysis of lignocellulosic biomass comprises hundreds of oxy-components which vitiate its quality in terms of low heating value, low stability, low pH, etc. Therefore, it has to be upgraded prior to its use as transportation fuel. In this work, guaiacol, a promising compound of the phenolic fraction of unprocessed bio-oil, is considered as a model component for studying its hydrodeoxygenation over a Pt catalyst cluster.
View Article and Find Full Text PDFThe catalytic conversion of 2-hydroxybenzaldehyde (2-HB) is carried out numerically over a Pd(111) surface using density functional theory. The palladium catalyst surface is designed using a 12 atom monolayer and verified with the adsorption of phenol, benzene, anisole, guaiacol, and vanillin; it is found that the adsorption energies along with the adsorption configurations of phenol and benzene are in excellent agreement with the literature. The conversion of 2-HB over the Pd(111) catalyst surface is performed using four reaction schemes: (i) dehydrogenation of the formyl group followed by elimination of CO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (ii) direct elimination of CHO from 2-HB followed by elimination of hydrogen from adsorbed CHO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (iii) direct dehydroxylation of 2-HB followed by association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde, and (iv) dehydrogenation of the hydroxyl group of 2-HB followed by elimination of an oxygen atom and association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde.
View Article and Find Full Text PDF