Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. This paper introduces HDL-ACO, a novel Hybrid Deep Learning (HDL) framework that integrates Convolutional Neural Networks with Ant Colony Optimization (ACO) to enhance classification accuracy and computational efficiency. The proposed methodology involves pre-processing the OCT dataset using discrete wavelet transform and ACO-optimized augmentation, followed by multiscale patch embedding to generate image patches of varying sizes.
View Article and Find Full Text PDF