Publications by authors named "Anand H G Patel"

The finite field (FF) method is a quick, easy-to-implement tool for the prediction of nonlinear optical properties. Here, we present and explore a novel variant of the FF method, which uses a rational function to fit a molecule's energy with respect to an electric field. Similarly to previous FF methods, factors crucial for the method's accuracy were tuned.

View Article and Find Full Text PDF

Three different pK prediction methods were used to calculate the pK of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pK prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually.

View Article and Find Full Text PDF

Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons.

View Article and Find Full Text PDF