In situ patterning of biomolecules and living organisms while retaining their biological activity is extremely challenging, primarily because such patterning typically involves thermal stresses that could be substantially higher than the physiological thermal or stress tolerance level. Top-down patterning approaches are especially prone to these issues, while bottom-up approaches suffer from a lack of control in developing defined structures and the time required for patterning. A microbubble generated and manipulated by optical tweezers (microbubble lithography) is used to self-assemble and pattern living organisms in continuous microscopic structures in real-time, where the material thus patterned remains biologically active due to their ability to withstand elevated temperatures for short exposures.
View Article and Find Full Text PDFA microbubble nucleated due to the absorption of a tightly focused laser at the interface of a liquid-solid substrate enables directed and irreversible self-assembly of mesoscopic particles dispersed in the liquid at the bubble base. This phenomenon has facilitated a new microlithography technique which has grown rapidly over the past decade and can now reliably pattern a vast range of soft materials and colloids, ranging from polymers to metals to proteins. In this review, we discuss the science behind this technology and the present state-of-the-art.
View Article and Find Full Text PDFEvaporating sessile droplets have been known to exhibit oscillations on the air-liquid interface. These are generally over millimeter scales. Using a novel approach, we are able to measure surface height changes of 500 nm amplitude using optical trapping of a set of microscopic particles at the interface, particularly when the vertical thickness of the droplet reduces to less than 50 m.
View Article and Find Full Text PDF