Morphometric estimates of mean or individual glomerular volume (MGV, IGV) have biological implications, over and above qualitative histologic data. However, morphometry is time-consuming and requires expertise limiting its utility in clinical cases. We evaluated MGV and IGV using plastic- and paraffin-embedded tissue from 10 control and 10 focal segmental glomerulosclerosis (FSGS) mice (aging and 5/6th nephrectomy models) using the gold standard Cavalieri (Cav) method versus the 2-profile and Weibel-Gomez (WG) methods and a novel 3-profile method.
View Article and Find Full Text PDFHerein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS.
View Article and Find Full Text PDFType 2 diabetes mellitus is strongly associated with cardiac mitochondrial dysfunction, which is one of the main reasons for cardiovascular diseases. Among the mitochondrial metabolic changes, fatty acid metabolism is of great importance as cardiac tissues depend primarily on fatty acids. Honokiol, a constituent of Magnolia tree bark extract, is reported to strongly influence cardiac mitochondrial functions, via various mechanisms.
View Article and Find Full Text PDFHeart diseases are common in the offspring of diabetic mother (ODM). Defects in mitochondrial metabolism and autophagy may, in part, be responsible for the adverse structural and functional alterations in the heart. The principal objective of this study was to investigate cardiac mitochondrial respiration and autophagy in male and female offspring of diabetic pregnancy at two different developmental stages of life, weaning and adult.
View Article and Find Full Text PDFProtein modifications effected by nitric oxide (NO) primarily in conjunction with reactive oxygen species (ROS) include tyrosine nitration, cysteine S-nitrosylation, and glutathionylation. The physiological and pathological relevance of these three modifications is determined by the amino acids on which these modifications occur -cysteine and tyrosine, for instance, ranging from altering structural integrity/catalytic activity of proteins or by altering propensity towards protein degradation. Even though tyrosine nitration is a well-established nitroxidative stress marker, instilled as a footprint of oxygen- and nitrogen-derived oxidants, newer data suggest its wider role in embryonic heart development and substantiate the need to focus on elucidating the underlying mechanisms of reversibility and specificity of tyrosine nitration.
View Article and Find Full Text PDF