Human Interferon (IFN) lambda 3 (IFN-λ3) and IFN-λ4 are closely linked at the IFNL locus and show association with several diseases in genetic studies. Since they are only ~30% identical to each other, to better understand their roles in disease phenotypes, comparative studies are needed. Monocytes are precursors to macrophages (monocyte-derived macrophages; MDMs) that get differentiated under the influence of various immune factors, including IFNs.
View Article and Find Full Text PDFInterferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles.
View Article and Find Full Text PDFHuman IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity.
View Article and Find Full Text PDFGenetic variants at the interferon lambda (IFNL) locus have been associated with several human phenotypes in both disease and health. In chronic hepatitis C virus (HCV) infections, where the IFNL variants were first identified to be associated with response to interferon-α-ribavirin therapy, the available data clearly suggests that the causal variant could be the dinucleotide polymorphism rs368234815 that causes an open reading frame-shift in the IFNL4 gene resulting in expression of a functional IFN-λ4, a new type III IFN. In other human diseases/phenotypes where IFNL variants have been recently associated with, the causal mechanism remains unclear.
View Article and Find Full Text PDFGenome-wide association studies discovered interferon lambda (IFNL or IFN-λ) locus on chromosome 19 to be involved in clearance of chronic hepatitis C virus (HCV) infection in patients following interferon-α-ribavirin (IFN-RBV) therapy. Subsequent studies established a dinucleotide polymorphism rs368234815, as the prime causal variant behind this association. The ΔG allele of this variant gives rise to a new IFNL gene, IFNL4, coding for IFN-λ4 whose activity paradoxically associates with lesser viral clearance rates.
View Article and Find Full Text PDFThe expression of a biologically active human IFNλ4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFNλ4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C).
View Article and Find Full Text PDF