We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.
View Article and Find Full Text PDFUnderstanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to be essential in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz, is challenging because of limited sampling volumes and the need for high spectroscopic resolution.
View Article and Find Full Text PDFAs the only semimetallic d-based delafossite, AgNiO has received a great deal of attention due to both its unique semimetallicity and its antiferromagnetism in the NiO layer that is coupled with a lattice distortion. In contrast, other delafossites such as AgCoO are insulating. Here we study how the electronic structure of AgNiCoO alloys vary with Ni/Co concentration, in order to investigate the electronic properties and phase stability of the intermetallics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Recent reports of superconductivity at KTaO (KTO) (110) and (111) interfaces have sparked intense interest due to the relatively high critical temperature as well as other properties that distinguish this system from the more extensively studied SrTiO (STO)-based heterostructures. Here, we report the reconfigurable creation of conducting structures at intrinsically insulating LaAlO/KTO(110) and (111) interfaces. Devices are created using two distinct methods previously developed for STO-based heterostructures: (1) conductive atomic-force microscopy lithography and (2) ultralow-voltage electron-beam lithography.
View Article and Find Full Text PDFBulk SrTiO is a well-known band insulator and the most common substrate used in the field of complex oxide heterostructures. Its surface and interface with other oxides, however, have demonstrated a variety of remarkable behaviors distinct from those expected. In this work, using a suite of in situ techniques to monitor both the atomic and electronic structures of the SrTiO (001) surface prior to and during growth, the disappearance and re-appearance of a 2D electron gas (2DEG) is observed after the completion of each SrO and TiO monolayer, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Developing atomic-scale synthesis control is a prerequisite for understanding and engineering the exotic physics inherent to transition-metal oxide heterostructures. Thus, far, however, the number of materials systems explored has been extremely limited, particularly with regard to the crystalline substrate, which is routinely SrTiO. Here, we investigate the growth of a rare-earth nickelate─LaNiO─on (LaAlO)(SrAlTaO) (LSAT) (001) by oxide molecular beam epitaxy (MBE).
View Article and Find Full Text PDFPure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator CrO.
View Article and Find Full Text PDFThe distinctive electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we report on the discovery of superconductivity in electron gases formed at interfaces between (111)-oriented KTaO and insulating overlayers of either EuO or LaAlO The superconducting transition temperature, as high as 2.2 kelvin, is about one order of magnitude higher than that of the LaAlO/SrTiO system.
View Article and Find Full Text PDFAmongst the rare-earth perovskite nickelates, LaNiO (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability.
View Article and Find Full Text PDFStrongly correlated electronic molecules open the way for strong coupling between charge, spin, and lattice degrees of freedom to enable interdisciplinary fields, such as molecular electronic switches and plasmonics, spintronics, information storage, and superconducting circuits. However, despite exciting computational predictions and promising advantages to prepare flexible geometries, the electron correlation effect in molecules has been elusive. Here, the electron correlation effects of molecular plasmonic films are reported to uncover their coupling of charge, spin, lattice, and orbital for the switchable metal-to-insulator transition under external stimuli, at which the simultaneous transition occurs from the paramagnetic, electrical, and thermal conducting state to the diamagnetic, electrical, and thermal insulating state.
View Article and Find Full Text PDFObjective: The aim of this study was to develop better understanding of the leadership characteristics of clinical nurse leaders.
Background: Transformational leaders are the essential to support nursing in taking control of patient and family care coordination. One prior study of leadership and work engagement among clinical nurse leaders was identified.
Combining multiple fast image acquisitions to mitigate scan noise and drift artifacts has proven essential for picometer precision, quantitative analysis of atomic resolution scanning transmission electron microscopy (STEM) data. For very low signal-to-noise ratio (SNR) image stacks - frequently required for undistorted imaging at liquid nitrogen temperatures - image registration is particularly delicate, and standard approaches may either fail, or produce subtly specious reconstructed lattice images. We present an approach which effectively registers and averages image stacks which are challenging due to their low-SNR and propensity for unit cell misalignments.
View Article and Find Full Text PDFThe coupling of ordered electronic phases with lattice, spin, and orbital degrees of freedom are of central interest in strongly correlated systems. Their interplay has been intensively studied from femtosecond to picosecond time scales, while their dynamics beyond nanoseconds are usually assumed to follow lattice cooling. Here, we report an unusual slowing down of the recovery of an electronic phase across a first-order phase transition.
View Article and Find Full Text PDFWhen an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate.
View Article and Find Full Text PDFUnlabelled: ED volume and acuity were anticipated to increase at an inner-city hospital. A strategy to mitigate the impact was needed.
Methods: A multidisciplinary team facilitated a workflow modification project implementing a Super Track to treat low-acuity patients.
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30 nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect.
View Article and Find Full Text PDFJ Am Soc Hypertens
September 2015
Hypertension is a lifelong condition; thus, long-term adherence to lifestyle modification, self-monitoring, and medication regimens remains a challenge for patients. The aim of this study was to develop a patient-reported hypertension instrument that measured attitudes, lifestyle behaviors, adherence, and barriers to hypertension management using patient-reported outcome data. The study was conducted using the Open Research Exchange software platform created by PatientsLikeMe.
View Article and Find Full Text PDFThis cross-sectional study examined accelerated second-degree (n = 117) and traditional (n = 71) baccalaureate nursing (BSN) graduates from a large, private, urban university in the mid-Atlantic United States regarding demographics, professional outcomes, and career satisfaction using an electronic survey. Results showed a statistically significant difference in two professional development variables: plans to return for an advanced nursing degree and membership in nursing professional organizations. There was no statistically significant difference in career satisfaction between accelerated second-degree and traditional BSN graduates.
View Article and Find Full Text PDFLattice distortion due to oxygen octahedral rotations have a significant role in mediating the magnetism in oxides, and recently attracts a lot of interests in the study of complex oxides interface. However, the direct experimental evidence for the interrelation between octahedral rotation and magnetism at interface is scarce. Here we demonstrate that interfacial octahedral rotation are closely linked to the strongly modified ferromagnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices.
View Article and Find Full Text PDF