Microalgae and fungi in the fungi-microalgae symbiotic system(FMSS) can solve the problems of deep purification of heavy metals in wastewater and harvesting of microalgae cell by synergistic interaction. Therefore, it is of great significance to use the FMSS for remediation of heavy metal pollution. However, at present, the immobilization and transformation mechanism of heavy metals in the FMSS is not clear, which limits the development and industrial application of the FMSS with high adsorption performance, high selectivity, and high tolerance.
View Article and Find Full Text PDFAcid rain (AR) causes numerous environmental problems and complex negative effects on plants globally. Many studies have previously reported on direct effects of AR or its depositional substances on plant injury and performance. However, few studies have addressed the indirect effects of AR on plants as mediated by soil microorganisms and the abiotic environment of the soil rhizosphere.
View Article and Find Full Text PDFFungus-algae symbiotic systems (FASS) are typically used to assist in the immobilization of algae and strengthen the adsorption of heavy metals. However, the adsorption behavior of the symbiotic system and the molecular regulation mechanism of extracellular proteins in the adsorption of heavy metals have not been reported in detail. In this study, a stable FCSS (fungus-cyanobacterium symbiotic system) was used to study Cd(II) adsorption behavior.
View Article and Find Full Text PDFThe method of collecting microalgae using fungal mycelium pellets has attracted widespread attention because of its high efficiency and simplicity. In this study, the interaction in FMSS was explored using Aspergillus fumigatus and Synechocystis sp. PCC6803.
View Article and Find Full Text PDFDue to the bioaccumulation and non-biodegradability of cadmium, Cd can pose a serious threat to ecosystem even at low concentration. Microalgae is widely distributed photosynthetic organisms in nature, which is a promising heavy metal remover and an effective industrial sewage cleaner. However, there are few detailed reports on the short-term and long-term molecular mechanisms of microalgae under Cd stress.
View Article and Find Full Text PDFA better understanding of different retention mechanisms of potentially toxic elements (PTEs) by biochars during the remediation of contaminated sites is critically needed. In this study, different spectroscopic techniques including synchrotron-based micro-X-ray fluorescence (μ-XRF), X-ray absorption fine structure (XAFS), and near-edge XAFS spectroscopy (NEXAFS), were used to investigate the spatial distributions and retention mechanisms of lead (Pb) and copper (Cu) on phytolith-rich coconut-fiber biochar (CFB), and ammonia, nitric acid and hydrogen peroxide modified CFB (MCFB) (i.e.
View Article and Find Full Text PDFLead (Pb) and copper (Cu) contamination seriously threatens agricultural production and food safety. This study aims to investigate Pb and Cu induced hormetic effect and toxicity mechanisms in lettuce (Lactuca sativa L.) and establish reliable empirical models of potentially toxic elements (PTEs) transfer in the soil-plant system.
View Article and Find Full Text PDFThe differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+).
View Article and Find Full Text PDFThe sulfur oxidation activities of four pure thermophilic archaea Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared. Meanwhile, the relevant surface sulfur speciation of chalcopyrite leached with the mixed thermophilic archaea was investigated. The results showed that the mixed culture, with contributing significantly to the raising of leaching rate and accelerating the formation of leaching products, may have a higher sulfur oxidation activity than the pure cultures, and jarosite was the main passivation component hindering the dissolution of chalcopyrite, while elemental sulfur seemed to have no influence on the dissolution of chalcopyrite.
View Article and Find Full Text PDFThe speciation transformation of elemental sulfur mediated by the leaching bacterium Acidithiobacillus ferrooxidans was investigated using an integrated approach including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and X-ray absorption near edge spectroscopy (XANES). Our results showed that when grown on elemental sulfur powder, At. ferrooxidans ATCC23270 cells were first attached to sulfur particles and modified the surface sulfur with some amphiphilic compounds.
View Article and Find Full Text PDF