IEEE Trans Cybern
November 2023
Automatic tumor or lesion segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because, although the human visual system can detect symmetries in 2-D images effectively, regular CNNs can only exploit translation invariance, overlooking further inherent symmetries existing in medical images, such as rotations and reflections.
View Article and Find Full Text PDFAutomatic medical image segmentation plays an important role as a diagnostic aid in the identification of diseases and their treatment in clinical settings. Recently proposed methods based on Convolutional Neural Networks (CNNs) have demonstrated their potential in image processing tasks, including some medical image analysis tasks. Those methods can learn various feature representations with numerous weight-shared convolutional kernels, however, the missed diagnosis rate of regions of interest (ROIs) is still high in medical image segmentation.
View Article and Find Full Text PDFCompared with the traditional analysis of computed tomography scans, automatic liver tumor segmentation can supply precise tumor volumes and reduce the inter-observer variability in estimating the tumor size and the tumor burden, which could further assist physicians to make better therapeutic choices for hepatic diseases and monitoring treatment. Among current mainstream segmentation approaches, multi-layer and multi-kernel convolutional neural networks (CNNs) have attracted much attention in diverse biomedical/medical image segmentation tasks with remarkable performance. However, an arbitrary stacking of feature maps makes CNNs quite inconsistent in imitating the cognition and the visual attention of human beings for a specific visual task.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2020
Purpose: Unlike the normal organ segmentation task, automatic tumor segmentation is a more challenging task because of the existence of similar visual characteristics between tumors and their surroundings, especially on computed tomography (CT) images with severe low contrast resolution, as well as the diversity and individual characteristics of data acquisition procedures and devices. Consequently, most of the recently proposed methods have become increasingly difficult to be applied on a different tumor dataset with good results, and moreover, some tumor segmentors usually fail to generalize beyond those datasets and modalities used in their original evaluation experiments.
Methods: In order to alleviate some of the problems with the recently proposed methods, we propose a novel unified and end-to-end adversarial learning framework for automatic segmentation of any kinds of tumors from CT scans, called CTumorGAN, consisting of a Generator network and a Discriminator network.
Med Biol Eng Comput
January 2019
With the advent of biomedical imaging technology, the number of captured and stored biomedical images is rapidly increasing day by day in hospitals, imaging laboratories and biomedical institutions. Therefore, more robust biomedical image analysis technology is needed to meet the requirement of the diagnosis and classification of various kinds of diseases using biomedical images. However, the current biomedical image classification methods and general non-biomedical image classifiers cannot extract more compact biomedical image features or capture the tiny differences between similar images with different types of diseases from the same category.
View Article and Find Full Text PDF