Background: The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice.
View Article and Find Full Text PDFSignificance: Current treatment for stage III colorectal cancer (CRC) patients involves surgery that may not be sufficient in many cases, requiring additional adjuvant systemic therapy. Identification of this latter cohort that is likely to recur following surgery is key to better personalized therapy selection, but there is a lack of proper quantitative assessment tools for potential clinical adoption.
Aim: The purpose of this study is to employ Mueller matrix (MM) polarized light microscopy in combination with supervised machine learning (ML) to quantitatively analyze the prognostic value of peri-tumoral collagen in CRC in relation to 5-year local recurrence (LR).
The peri-tumoural stroma has been explored as a useful source of prognostic information in colorectal cancer. Using Mueller matrix (MM) polarized light microscopy for quantification of unstained histology slides, the current study assesses the prognostic potential of polarimetric characteristics of peri-tumoural collagenous stroma architecture in 38 human stage III colorectal cancer (CRC) patient samples. Specifically, Mueller matrix transformation and polar decomposition parameters were tested for association with 5-year patient local recurrence outcomes.
View Article and Find Full Text PDFThe dominant consequence of irradiating biological systems is cellular damage, yet microvascular damage begins to assume an increasingly important role as the radiation dose levels increase. This is currently becoming more relevant in radiation medicine with its pivot towards higher-dose-per-fraction/fewer fractions treatment paradigm (e.g.
View Article and Find Full Text PDF