Publications by authors named "Anamika Dubey"

Introduction: The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains.

View Article and Find Full Text PDF

Bacillus sp. has proven to be a goldmine of diverse bioactive lipopeptides, finding wide-range of industrial applications. This review highlights the importance of three major families of lipopeptides (iturin, fengycin, and surfactin) produced by Bacillus sp.

View Article and Find Full Text PDF

A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions.

View Article and Find Full Text PDF

In this study GC-MS-based untargeted metabolomics was used to identify the metabolic response of earthworm; Eudrilus eugeniae exposed to sub-lethal concentrations of chlorpyrifos-CHL, cypermethrin-CYP, Glyphosate-GLY, and Combined-C (all three pesticides) at the concentrations of 3, 6, and 12 mg/kg. Principal component analysis of the obtained datasets revealed a clear distinction between the control and treatment groups. The mean weight of the worms in the treated groups decreased significantly (p < 0.

View Article and Find Full Text PDF

Increased anthropogenic activities are confronted as the main cause for rising environmental and health concerns globally, presenting an indisputable threat to both environment and human well-being. Modern-day industrialization has given rise to a cascade of concurrent environmental and health challenges. The global human population is growing at an alarming rate, posing tremendous pressure on future food security, and healthy and environmentally sustainable diets for all.

View Article and Find Full Text PDF

Ongoing and extensive use of pesticides negatively impact the environment and human health. Microbe-based remediation bears importance as it is an eco-friendly and cost-effective technique. The present study investigated chlorpyrifos (CHL) and glyphosate (GLY) degrading potential of Bacillus cereus AKAD 3-1, isolated from the soybean rhizosphere.

View Article and Find Full Text PDF

Aim: Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by cognitive deficits and abnormal memory formation. Histone acetylation is essential for hippocampal memory formation and improving the cognitive deficits, and histone deacetylase 2 (HDAC2) is increased in the hippocampus of AD patients. The present study evaluated the effects of the nitric oxide (NO) mimetics, L-arginine and the nitrosothiol NO donor, s-nitrosoglutathione (GSNO), on memory and brain HDAC2 levels in experimental animal model of sporadic Alzheimer's disease (sAD).

View Article and Find Full Text PDF

Pyrethroid pesticides are of great environmental and health concern with regard to neurotoxicity and ubiquitous occurrence. Here, we reported a new bacterial strain identified as Bacillus cereus AKAD 3-1 that degraded 88.1% of 50 mg/l of cypermethrin in an aqueous medium.

View Article and Find Full Text PDF

Microbes are crucial in removing various xenobiotics, including pesticides, from the environment, specifically by mineralizing these hazardous pollutants. However, the specific procedure of microbe-mediated pesticide degradation and its consequence on the environment remain elusive owing to limitations in culturing techniques. Therefore, in this study, we have investigated i) the physicochemical and elemental compositions of PCAS (pesticide-contaminated agricultural soils) and NS (natural soils); ii) the bacterial communities and degradation pathways, as well as some novel biodegradation genes (BDGs) and pesticide degradation genes (PDGs) across two different landscapes (PCAS and NS) by applying high-throughput sequencing.

View Article and Find Full Text PDF

Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20-34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.

View Article and Find Full Text PDF

The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions.

View Article and Find Full Text PDF

Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities as well as soil health. This study investigated, for the first time, keystone microbial taxa inhabiting the rhizosphere of sweet sorghum () under extensive cultivation practices at three different field sites of South Africa (North West-South (ASHSOIL1); Mpumalanga-West - (ASHSOIL2); and Free State-North West - (ASHSOIL3)). Soil analysis of these sites revealed differences in P, K, Mg, and pH.

View Article and Find Full Text PDF

Climate change, water scarcity, population growth, and food shortage are some of the threatening challenges being faced in today's world. Among different types of stresses, drought stress presents a persistent challenge for global food production, however, its harshness and intensity are supposed to expand in the imminent future. The most striking effects of drought stress on plants are stunted growth, severe damage to photosynthetic apparatus, reduction in photosynthesis, reduction in seed germination, and nutrient uptake.

View Article and Find Full Text PDF

Recently, the application of endophytes in the alleviation of different types of stresses has received considerable attention, but their role in drought stress alleviation and growth promotion in soybean is not well-stated. In this study, twenty bacterial endophytes were isolated from soybean root tissues and screened for plant growth-promoting (PGP) traits, biocontrol potential, and drought stress alleviation. Out of them, 80% showed PGP traits, and 20% showed antagonistic activity against (ITCC 2389), (ITCC 1800), and (ITCC 3467), and only three of them showed drought tolerance up to 15% (-0.

View Article and Find Full Text PDF

Considering the potential threat and the contagious nature of the Covid-19 pandemic, lockdowns have been implemented worldwide to stop the spread of this novel virus. The coronavirus pandemic has hit the world severely, representing the most severe threat to human health in more than a century. The environment from local to global scales has witnessed apparent positive and negative impacts.

View Article and Find Full Text PDF

Endophytic microbes are present in nearly all of the plant species known to date but how they enter and flourish inside a host plant and display multiple benefits like plant growth promotion (PGP), biodegradation, and stress alleviation are still unexplored. Until now, the majority of the research has been conducted assuming that the host-endophyte interaction is analogous to the PGP microbes, although, studies related to the mechanisms of their infection, colonization as well as conferring important traits to the plants are limited. It would be fascinating to explore the role of these endophytic microbes in host gene expression, metabolism, and the modulation of phenotypic traits, under abiotic and biotic stress conditions.

View Article and Find Full Text PDF

Plants in nature are constantly exposed to a variety of abiotic and biotic stresses which limits their growth and production. Enhancing crop yield and production to feed exponentially growing global population in a sustainable manner by reduced chemical fertilization and agrochemicals will be a big challenge. Recently, the targeted application of beneficial plant microbiome and their cocktails to counteract abiotic and biotic stress is gaining momentum and becomes an exciting frontier of research.

View Article and Find Full Text PDF

strain JDARSH, a potential probiotic with a wide range of functions, was isolated from sheep milk. Here, we report the whole-genome sequence of this bacterium. The draft genome yielded a 3.

View Article and Find Full Text PDF

The interaction between the human microbiome and immune system has an effect on several human metabolic functions and impacts our well-being. Additionally, the interaction between humans and microbes can also play a key role in determining the wellness or disease status of the human body. Dysbiosis is related to a plethora of diseases, including skin, inflammatory, metabolic, and neurological disorders.

View Article and Find Full Text PDF

Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds.

View Article and Find Full Text PDF

The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products.

View Article and Find Full Text PDF