Background: The purpose of this study was to investigate the suitability of nanostructured lipid carriers (NLCs) loaded with miltefosine (HePC) as an anticancer drug for the treatment of breast cancer.
Methods: HePC-NLCs were prepared using a microemulsion technique and then evaluated for particle size, polydispersity index (PDI), incorporation efficiency, in vitro release of entrapped drug, and hemolytic potential. Furthermore, pharmacokinetic, biodistribution, and liver toxicity analyses were performed in Sprague-Dawley rats, and antitumor efficacy was evaluated in Michigan Cancer Foundation-7 (MCF-7) and squamous cell carcinoma-7 (SCC-7) cells in vitro and in tumour-bearing BALB/c mice in vivo.
The purpose of this study was to enhance the anti-leishmanial efficacy of miltefosine (MTF) and reduce its toxic effects by loading it into nanostructured lipid carriers (NLCs). Micro-emulsion technique was used to prepare MTF-loaded NLCs. The optimized NLCs were characterized in terms of various physicochemical parameters including particle size, poly dispersity index (PDI), zeta potential, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) technique.
View Article and Find Full Text PDFThe aim of this study was to develop levosulpiride-loaded solid lipid nanoparticles (SLNs) with enhanced solubilisation and bioavailability. The levosulpiride loaded-SLNs were composed of levosulpiride, stearic acid, and tween 80 in their respective weight ratios of (1, 5, and 1.5 mg) dissolved in 1 ml distilled water.
View Article and Find Full Text PDF