Purpose: Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.
Methods: We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity.
Germline heterozygous mutations in DDX41 predispose individuals to hematologic malignancies in adulthood. Most of these DDX41 mutations result in a truncated protein, leading to loss of protein function. To investigate the impact of these mutations on hematopoiesis, we generated mice with hematopoietic-specific knockout of one Ddx41 allele.
View Article and Find Full Text PDFBackground: Atrioventricular valve regurgitation (AVVR) is a devastating complication in children and young adults with congenital heart disease (CHD), particularly in patients with single ventricle physiology. Transcatheter edge-to-edge repair (TEER) is a rapidly expanding, minimally invasive option for the treatment of AVVR in adults that avoids the morbidity and mortality associated with open heart surgery. However, application of TEER in in CHD and in children is quite novel.
View Article and Find Full Text PDFA 38-year-old woman with sinus venosus atrial septal defect and partial anomalous return of the right upper pulmonary vein underwent a Warden procedure but experienced a large residual defect after patch dehiscence. Image-derived 3D modeling informed novel device closure with a Gore Cardioform atrial septal occluder. ().
View Article and Find Full Text PDF