We use a layered model of normal human skin based on size distributions of polydisperse spherical particles and their complex refractive indices to compute the Stokes scattering matrix at wavelengths in the visible spectral band. The elements of the Stokes scattering matrix are required in a polarized radiative transfer code for a coupled air-tissue system to compute the polarized reflectance and examine how it is dependent on the vertical structure of the inherent optical properties of skin, including the phase matrix. Thus, the elements of the Stokes scattering matrix can be useful for investigating polarization-dependent light propagation in turbid optical media, such as human skin tissue.
View Article and Find Full Text PDFA Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence.
View Article and Find Full Text PDF