Publications by authors named "Anais Pitto-Barry"

The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate-based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non-small-cell lung cancer cell line (H460) and one normal prostate cell line (PNT2) are presented herein. These 18-electron complexes were designed with four water-soluble phosphine ligands to increase the water-solubility character of the corresponding electron-deficient ruthenium complex which showed great in vitro promises, and triphenylphosphine for comparison. The complexes with triphenylphosphine-3,3',3''-trisulfonic acid and triphenylphosphine present similar cytotoxicity compared to the 16-electron precursor, with equal cytotoxicity to both A2780 and A2780cisR.

View Article and Find Full Text PDF

Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains.

View Article and Find Full Text PDF

Excessive cellular oxidative stress is widely perceived as a key factor in pathophysiological conditions and cancer development. Healthy cells use several mechanisms to maintain intracellular levels of reactive oxygen species (ROS) and overall redox homeostasis to avoid damage to DNA, proteins, and lipids. Cancer cells, in contrast, exhibit elevated ROS levels and upregulated protective antioxidant pathways.

View Article and Find Full Text PDF

Complex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials.

View Article and Find Full Text PDF

Electron-deficient half-sandwich complexes are a class of under-studied organometallics with demonstrated potential as metallodrug candidates. This study investigates the effect of two 16-electron organoruthenium complexes ([(p-cym)Ru(benzene-1,2-dithiolato)] (1) and [(p-cym)Ru(maleonitriledithiolate)] (2)) on the cell viability of non-immortalised human lymphocytes from healthy individuals. The genotoxic effects of 1 and 2 in lymphocytes are also investigated by using the Comet and cytokinesis-block micronucleus assays.

View Article and Find Full Text PDF

The synthesis, characterisation and evaluation of the in vitro cytotoxicity of four indole-based half-sandwich metal complexes towards two ovarian cancer cell lines (A2780 and A2780cisR) and one normal prostate cell line (PNT2) are presented herein. Although capable of inducing catalytic oxidation of NADH and able to reduce NAD with high turnover frequencies, in cells and in the presence of sodium formate, these complexes also strongly interact with biomolecules such as glutathione. This work highlights that efficient out-of-cells catalytic activity might lead to higher reactivity towards biomolecules, thus inhibiting the in-cells catalytic processes.

View Article and Find Full Text PDF

Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action.

View Article and Find Full Text PDF

Correction for 'Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands' by Anaïs Pitto-Barry et al., Dalton Trans., 2017, 46, 15676-15683.

View Article and Find Full Text PDF

Understanding the effect of physical parameters (e.g., temperature) on crystallisation dynamics is of paramount importance for the synthesis of nanocrystals of well-defined sizes and geometries.

View Article and Find Full Text PDF

An evaluation of the in vitro cytotoxicity of nine electron-deficient half-sandwich metal complexes towards two colorectal cancer cell lines (HCT116 p53+/+, HCT116 p53-/-) and one normal prostate cell line (PNT2) is presented herein. Three complexes were found to be equally cytotoxic towards both colorectal cancer cell lines, suggesting a p53-independent mechanism of action. These complexes are 12 to 34× more potent than cisplatin against HCT116 p53+/+ and HCT116 p53-/- cells.

View Article and Find Full Text PDF

The fabrication of osmium nanoclusters from single atoms has been studied in real-time on B-doped and B-free graphitic surfaces. The dynamics of nucleation on both surfaces are identified, captured, and reported. The nucleation is ca.

View Article and Find Full Text PDF

A 16-electron iridium organometallic is reacted with carbon monoxide to form an 18-electron CO-adduct. This CO-adduct is stable for weeks in the solid state, but quickly reverts to its parent 16-e complex in tetrahydrofuran solution, releasing CO. Using a simple methodology, we show that this gas can subsequently be used to perform a carbonylation reaction on another molecule.

View Article and Find Full Text PDF

Here, we report how the stability of polyion complex (PIC) particles containing 's elastase (LasB) degradable peptides and antimicrobial poly(ethylene imine) is significantly improved by careful design of the peptide component. Three LasB-degradable peptides are reported herein, all of them carrying the LasB-degradable sequence -GLA- and for which the number of anionic amino acids and cysteine units per peptide were systematically varied. Our results suggest that while net charge and potential to cross-link via disulfide bond formation do not have a predictable effect on the ability of LasB to degrade these peptides, a significant effect of these two parameters on particle preparation and stability is observed.

View Article and Find Full Text PDF

Schizophrenia is a complex and unpredictable mental disorder which affects several domains of cognition and behaviour. It is a heterogeneous illness characterised by positive, negative, and cognitive symptoms, often accompanied by signs of depression. In this tutorial review, we discuss recent progress in understanding the target sites and mechanisms of action of second-generation antipsychotic drugs.

View Article and Find Full Text PDF

The physical properties of cyclic and linear polymers are markedly different; however, there are few examples which exploit these differences in clinical applications. In this study, we demonstrate that self-assemblies comprised of cyclic-linear graft copolymers are significantly more stable than the equivalent linear-linear graft copolymer assemblies. This difference in stability can be exploited to allow for triggered disassembly by cleavage of just a single bond within the cyclic polymer backbone, via disulfide reduction, in the presence of intracellular levels of l-glutathione.

View Article and Find Full Text PDF

Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g.

View Article and Find Full Text PDF

We report an evaluation of the cytotoxicity of a series of electron-deficient (16-electron) half-sandwich precious metal complexes of ruthenium, osmium and iridium ([Os/Ru(--cymene)(1,2-dicarba--dodecarborane-1,2-dithiolato)] (), [Ir(-pentamethylcyclopentadiene)(1,2-dicarba--dodecarborane-1,2-dithiolato)] (), [Os/Ru(--cymene)(benzene-1,2-dithiolato)] () and [Ir(-pentamethylcyclopentadiene)(benzene-1,2-dithiolato)] ()) towards RAW 264.7 murine macrophages and MRC-5 fibroblast cells. Complexes and were found to be non-cytotoxic.

View Article and Find Full Text PDF

2D materials such as graphene, LAPONITE® clays or molybdenum disulfide nanosheets are of extremely high interest to the materials community as a result of their high surface area and controllable surface properties. While several methods to access 2D inorganic materials are known, the investigation of 2D organic nanomaterials is less well developed on account of the lack of ready synthetic accessibility. Crystallization-driven self-assembly (CDSA) has become a powerful method to access a wide range of complex but precisely-defined nanostructures.

View Article and Find Full Text PDF

Osmium nanocrystals can be fabricated by electron (3-50 nm, formed by atom migration), 785-815 nm laser (20-50 nm, in micelle islands), and microwave (ca. 1 nm in arrays, >100 mg scale) irradiation of a polymer-encapsulated Os carborane; microfocus X-ray absorption studies at the Os L-edge show differences between the three preparation methods, suggesting that the electron-beam irradiated materials have a significant support interaction and/or surface oxidation, while the laser and microwave samples are more like metallic osmium.

View Article and Find Full Text PDF

Half-sandwich metal complexes are of considerable interest in medicinal, material, and nanomaterial chemistry. The design of libraries of such complexes with particular reactivity and properties is therefore a major quest. Here, we report the unique and peculiar reactivity of eight apparently 16-electron half-sandwich metal (ruthenium, osmium, rhodium, and iridium) complexes based on benzene-1,2-dithiolato and 3,6-dichlorobenzene-1,2-dithiolato chelating ligands.

View Article and Find Full Text PDF

Sequential ring-opening and reversible addition-fragmentation chain transfer (RAFT) polymerization was used to form a triblock copolymer of tetrahydropyran acrylate (THPA), 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) and l-lactide. Concurrent deprotection of the THPA block and crystallization-driven self-assembly (CDSA) was undertaken and allowed for the formation of cylindrical micelles bearing allyl handles in a short outer core segment. These handles were further functionalized by different thiols using photo-initiated thiol-ene radical reactions to demonstrate that the incorporation of an amorphous PMAC block within the core does not disrupt CDSA and can be used to load the cylindrical nanoparticles with cargo.

View Article and Find Full Text PDF

Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) and thymine (T) homopolymers, and A/T copolymer blocks and blends were investigated. These studies highlighted that depending on the identity of the common solvent, DMF or DMSO, spherical micelles or bicontinuous micelles were obtained.

View Article and Find Full Text PDF

The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide-alkyne cycloaddition (CuAAC), and reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues.

View Article and Find Full Text PDF

The functionalisation of the 16-electron complex [Os(η(6)-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1) with a series of Lewis bases to give the 18-electron complexes of general formula [Os(η(6)-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)(L)] (L = pyridine (2), 4-dimethylaminopyridine (3), 4-cyanopyridine (4), 4-methoxypyridine (5), pyrazine (6), pyridazine (7), 4,4'-bipyridine (8) and triphenylphosphine (9)) is reported. All 18-electron complexes are in equilibrium in solution with the 16-electron precursor, and thermochromic properties are observed in some cases (2, 3, 5, 8, and 9). The binding constants and Gibbs free energies of the equilibria are determined using UV-visible titrations and their stabilities investigated.

View Article and Find Full Text PDF

The fabrication of precious metal (ruthenium, osmium, gold, and iridium) nanocrystals from single atoms has been studied in real-time. The dynamics of the first stage of the metal nanocrystallisation on a doped (B,S)-graphitic surface are identified, captured, and reported.

View Article and Find Full Text PDF