Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation.
View Article and Find Full Text PDFThe faster evolution of X chromosomes has been documented in several species, and results from the increased efficiency of selection on recessive alleles in hemizygous males and/or from increased drift due to the smaller effective population size of X chromosomes. Aphids are excellent models for evaluating the importance of selection in faster-X evolution because their peculiar life cycle and unusual inheritance of sex chromosomes should generally lead to equivalent effective population sizes for X and autosomes. Because we lack a high-density genetic map for the pea aphid, whose complete genome has been sequenced, we first assigned its entire genome to the X or autosomes based on ratios of sequencing depth in males (X0) to females (XX).
View Article and Find Full Text PDFEmergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests.
View Article and Find Full Text PDFBioinformatics
December 2014
Motivation: Insertions play an important role in genome evolution. However, such variants are difficult to detect from short-read sequencing data, especially when they exceed the paired-end insert size. Many approaches have been proposed to call short insertion variants based on paired-end mapping.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution.
View Article and Find Full Text PDF