The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.
View Article and Find Full Text PDFLiposome-based nanoparticles able to release, via a photolytic reaction, a payload anchored at the surface of the phospholipid bilayer were prepared. The liposome formulation strategy uses an original drug-conjugated blue light-sensitive photoactivatable coumarinyl linker. This is based on an efficient blue light-sensitive photolabile protecting group modified by a lipid anchor, which enables its incorporation into liposomes, leading to blue to green light-sensitive nanoparticles.
View Article and Find Full Text PDFPhotolytic reactions allow the optical control of the liberation of biological effectors by photolabile protecting groups. The development of versatile technologies enabling the use of deep-red or NIR light excitation still represents a challenging issue, in particular for light-induced drug release (e.g.
View Article and Find Full Text PDFChem Commun (Camb)
February 2021
Cell-penetrating foldamers (CPFs) have recently shown promise as efficient and safe nucleic acid delivery systems. However, the application of CPFs to siRNA transport remains scarce. Here, we report helical CPFs tailored with specific end-groups (pyridylthio- or n-octyl-ureas) as effective molecular systems in combination with helper lipids to intracellularly deliver biologically-relevant siRNA.
View Article and Find Full Text PDFTherapeutic cancer vaccines need thoughtful design to efficiently deliver appropriate antigens and adjuvants to the immune system. In the current study, we took advantage of the versatility of a liposomal platform to conceive and customize vaccines containing three elements needed for the induction of efficient antitumor immunity: i) a CD4 epitope peptide able to activate CD4 T helper cells, ii) a CD8 tumor-specific epitope peptide recognized by CD8 T cytotoxic cells and iii) Pattern Recognition Receptor (PRR) agonists which stand as adjuvants. Each type of component, conjugated to liposomes, was evaluated individually by comparing their vaccine efficacy after immunization of naïve mice.
View Article and Find Full Text PDFNowadays, the need for therapeutic biomaterials displaying anti-inflammatory properties to fight against inflammation-related diseases is continuously increasing. Compact polyelectrolyte complexes (CoPECs) represent a new class of materials obtained by ultracentrifugation of a polyanion/polycation complex suspension in the presence of salt. Here, a noncytotoxic β-cyclodextrin-functionalized chitosan/alginate CoPEC was formulated, characterized, and described as a promising drug carrier displaying an intrinsic anti-inflammatory property.
View Article and Find Full Text PDF