Signal Transduct Target Ther
October 2024
As resident macrophages of the central nervous system (CNS), microglia are associated with diverse functions essential to the developing and adult brain during homeostasis and disease. They are aided in their tasks by intricate bidirectional communication with other brain cells under steady-state conditions as well as with infiltrating peripheral immune cells during perturbations. Harmonious cell-cell communication involving microglia are considered crucial to maintain the healthy state of the tissue environment and to overcome pathology such as neuroinflammation.
View Article and Find Full Text PDFMicroglial cells perform a plethora of functions in the central nervous system (CNS), involving them in brain development, maintenance of homeostasis in adulthood, and CNS diseases. Significant technical advancements have prompted the development of novel systems adapted to analyze microglia with increasing specificity and intricacy. The advent of single-cell technologies combined with targeted mouse models has been decisive in deciphering microglia heterogeneity and dissecting microglial functions.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown and .
View Article and Find Full Text PDFHuntington's disease is caused by a CAG repeat expansion in exon 1 of the HTT gene. We have previously shown that exon 1 HTT does not always splice to exon 2 producing a small transcript (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The mechanisms by which this incomplete splicing occurs are unknown.
View Article and Find Full Text PDF