Publications by authors named "Anabella Srebrow"

RNA polymerase II (RNAPII) transcribes small nuclear RNA (snRNA) genes in close proximity to Cajal bodies, subnuclear compartments that depend on the SUMO isopeptidase USPL1 for their assembly. We show here that overexpression of USPL1 as well as of another nuclear SUMO isopeptidase, SENP6, alters snRNA 3'-end cleavage, a process carried out by the Integrator complex. Beyond its role in snRNA biogenesis, this complex is responsible for regulating the expression of different RNAPII transcripts.

View Article and Find Full Text PDF

Early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes.

View Article and Find Full Text PDF

RNA-seq experiments previously performed by our laboratories showed enrichment in intronic sequences and alterations in alternative splicing in dengue-infected human cells. The transcript of the SAT1 gene, of well-known antiviral action, displayed higher inclusion of exon 4 in infected cells, leading to an mRNA isoform that is degraded by non-sense mediated decay. SAT1 is a spermidine/spermine acetyl-transferase enzyme that decreases the reservoir of cellular polyamines, limiting viral replication.

View Article and Find Full Text PDF

R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes, including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation.

View Article and Find Full Text PDF

Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes.

View Article and Find Full Text PDF

Pre-mRNA splicing is catalyzed by the spliceosome, a multi-megadalton ribonucleoprotein machine. Previous work from our laboratory revealed the splicing factor SRSF1 as a regulator of the SUMO pathway, leading us to explore a connection between this pathway and the splicing machinery. We show here that addition of a recombinant SUMO-protease decreases the efficiency of pre-mRNA splicing in vitro.

View Article and Find Full Text PDF

Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns.

View Article and Find Full Text PDF

Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia.

View Article and Find Full Text PDF

Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain.

View Article and Find Full Text PDF
Article Synopsis
  • * Abnormal Akt signaling is linked to several diseases, making it a promising target for new therapies.
  • * Recent studies show that Akt undergoes multiple post-translational modifications beyond just phosphorylation, which can influence its function and specificity in cellular signaling.
View Article and Find Full Text PDF

The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner.

View Article and Find Full Text PDF

Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein.

View Article and Find Full Text PDF

The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR.

View Article and Find Full Text PDF
Article Synopsis
  • Alternative splicing and post-translational modifications play crucial roles in creating diverse proteins in eukaryotes, highlighting the complexity of gene expression processes.* -
  • Research has shown that serine/arginine-rich proteins, known for their role in splicing, are also involved in various stages of gene expression, including linking to post-translational modifications.* -
  • There is a significant interaction between different cellular machineries, such as ubiquitin pathways and splicing processes, which suggests a unified mechanism for regulating gene expression activities.*
View Article and Find Full Text PDF
Article Synopsis
  • Serine/arginine-rich (SR) proteins are key splicing regulators with roles in various cellular functions like genome stability, transcription, and mRNA processes.
  • Recent research highlights how SR proteins are regulated through feedback loops, microRNA interactions, and various post-translational modifications.
  • The article also examines newly discovered functions of SR proteins, particularly in micro-RNA processing and SUMO conjugation.
View Article and Find Full Text PDF
Article Synopsis
  • Heterogeneous nuclear ribonucleoprotein (hnRNP) K is crucial for the p53 DNA damage response, acting as a co-factor for p53 and is regulated by ubiquitin and SUMO modifications.
  • SUMO is added to hnRNP K at lysine 422, and its conjugation is controlled by the E3 ligase Pc2/CBX4, increasing in response to DNA damage.
  • The SUMO modification of hnRNP K is necessary for proper p53 transcriptional activation, particularly affecting the regulation of the p53 target gene p21.
View Article and Find Full Text PDF

Rac1b is an alternatively spliced isoform of the small GTPase Rac1 that includes the 57-nucleotide exon 3b. Rac1b was originally identified through its over-expression in breast and colorectal cancer cells, and has subsequently been implicated as a key player in a number of different oncogenic signaling pathways, including tumorigenic transformation of mammary epithelial cells exposed to matrix metalloproteinase-3 (MMP-3). Although many of the cellular consequences of Rac1b activity have been recently described, the molecular mechanism by which MMP-3 treatment leads to Rac1b induction has not been defined.

View Article and Find Full Text PDF

Protein modification by conjugation of small ubiquitin-related modifier (SUMO) is involved in diverse biological functions, such as transcription regulation, subcellular partitioning, stress response, DNA damage repair, and chromatin remodeling. Here, we show that the serine/arginine-rich protein SF2/ASF, a factor involved in splicing regulation and other RNA metabolism-related processes, is a regulator of the sumoylation pathway. The overexpression of this protein stimulates, but its knockdown inhibits SUMO conjugation.

View Article and Find Full Text PDF

It has been reported that expression of tumor necrosis factor superfamily members occur at the onset of the mammary gland post-lactational involution. One of these proteins, tumor necrosis factor alpha (TNFalpha), is a major mediator of inflammation that is able to induce expression of several cytokines. Leukemia inhibitory factor (LIF) is an inflammatory cytokine that is induced and plays a fundamental role during post-lactational involution of the mammary gland.

View Article and Find Full Text PDF

Post-splicing activities have been described for a subset of shuttling serine/arginine-rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras-PI 3-kinase-Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co-regulated levels of isoform-specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5'-terminus by the eIF4F protein complex.

View Article and Find Full Text PDF

Alternative splicing of messenger RNA precursors is an extraordinary source of protein diversity and the regulation of this process is crucial for diverse cellular functions in both physiological and pathological situations. For many years, several signaling pathways have been implicated in alternative splicing regulation. Recent work has begun to unravel the molecular mechanisms by which extracellular stimuli activate signaling cascades that modulate the activity of the splicing machinery and therefore the splicing pattern of many different target messenger RNA precursors.

View Article and Find Full Text PDF

Alternative splicing is a crucial mechanism for generating protein diversity. Different splice variants of a given protein can display different and even antagonistic biological functions. Therefore, appropriate control of their synthesis is required to assure the complex orchestration of cellular processes within multicellular organisms.

View Article and Find Full Text PDF

Serine/arginine-rich (SR) proteins are important regulators of mRNA splicing. Several postsplicing activities have been described for a subset of shuttling SR proteins, including regulation of mRNA export and translation. Using the fibronectin gene to study the links between signal-transduction pathways and SR protein activity, we show that growth factors not only modify the alternative splicing pattern of the fibronectin gene but also alter translation of reporter messenger RNAs in an SR protein-dependent fashion, providing two coregulated levels of isoform-specific amplification.

View Article and Find Full Text PDF

The regulation of alternative splicing by extracellular signals represents a key event in the control of gene expression. There is increasing evidence showing that many extracellular cues regulate alternative splicing. Nevertheless, the broad picture regarding the role of different signaling pathways and their interaction remains incomplete.

View Article and Find Full Text PDF

The way alternative splicing is regulated within tissues is not understood. A relevant model of this process is provided by fibronectin, an important extracellular matrix protein that plays a key role in cell adhesion and migration and contains three alternatively spliced regions known as EDI, EDII, and IIICS. We used a cell culture system to simulate mammary epithelial-stromal communication, a process that is crucial for patterning and function of the mammary gland, and studied the effects of extracellular signals on the regulation of fibronectin pre-mRNA alternative splicing.

View Article and Find Full Text PDF