Background: Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance.
View Article and Find Full Text PDFTransthyretin (TTR) has intrinsic neurotrophic physiological activities independent from its thyroxine ligands, which involve activation of signaling pathways through interaction with megalin. Still, the megalin binding motif on TTR is unknown. Nanobodies (Nb) have the ability to bind "hard to reach" epitopes being useful tools for protein/structure function.
View Article and Find Full Text PDFTransthyretin (TTR) is a transport protein of retinol and thyroxine in serum and CSF, which is mainly secreted by liver and choroid plexus, and in smaller amounts in other cells throughout the body. The exact role of TTR and its specific expression in Central Nervous System (CNS) remains understudied. We investigated TTR expression and metabolism in CNS, through the intranasal and intracerebroventricular delivery of a specific anti-TTR Nanobody to the brain, unveiling Nanobody pharmacokinetics to the CNS.
View Article and Find Full Text PDFFamilial amyloid polyneuropathy (FAP) is an autosomal dominant disease characterized by deposition of amyloid related to the presence of mutations in the transthyretin (TTR) gene. TTR is mainly synthesized in liver, choroid plexuses of brain and pancreas and secreted to plasma and cerebrospinal fluid (CSF). Although it possesses a sequon for N-glycosylation N-D-S at position 98, it is not secreted as a glycoprotein.
View Article and Find Full Text PDF