Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out.
View Article and Find Full Text PDFAnnual fish have become attractive study models for a wide range of disciplines, including neurobiology. These fish have developed different survival strategies. As a result, their nervous system is under considerable selective pressure when facing extreme environmental situations.
View Article and Find Full Text PDFannual fishes exhibit cell proliferation and neurogenesis throughout life. They withstand extreme environmental changes as their habitat dries out, pressuring nervous system to adapt. Their visual system is challenged to adjust as the water becomes turbid.
View Article and Find Full Text PDFOur previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days.
View Article and Find Full Text PDFAdult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3).
View Article and Find Full Text PDF