Publications by authors named "Anabel Molero"

Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core.

View Article and Find Full Text PDF

The incorporation of chemical modifications into the structure of bioactive compounds is often difficult because the biological properties of the new molecules must be retained with respect to the native ligand. Ergopeptides, with their high affinities at D(1) and D(2) dopamine receptors, are particularly complex examples. Here, we report the systematic derivatization of two ergopeptides with different peptide-based spacers and their evaluation by radioligand binding assays.

View Article and Find Full Text PDF

Adenosine A(2A) (A(2A)R) and dopamine D(2) (D(2)R) receptors mediate the antagonism between adenosinergic and dopaminergic transmission in striatopallidal GABAergic neurons and are pharmacological targets for the treatment of Parkinson's disease. Here, a family of heterobivalent ligands containing a D(2)R agonist and an A(2A)R antagonist linked through a spacer of variable size was designed and synthesized to study A(2A)R-D(2)R heteromers. Bivalent ligands with shorter linkers bound to D(2)R or A(2A)R with higher affinity than the corresponding monovalent controls in membranes from brain striatum and from cells coexpressing both receptors.

View Article and Find Full Text PDF