To reduce the secondary metabolite background in Aspergillus nidulans and minimize the rediscovery of compounds and pathway intermediates, we created a "genetic dereplication" strain in which we deleted eight of the most highly expressed secondary metabolite gene clusters (more than 244,000 base pairs deleted in total). This strain allowed us to discover a novel compound that we designate aspercryptin and to propose a biosynthetic pathway for the compound. Interestingly, aspercryptin is formed from compounds produced by two separate gene clusters, one of which makes the well-known product cichorine.
View Article and Find Full Text PDF