Publications by authors named "Ana-Violeta Fonseca"

Weibel-Palade bodies (WPBs) are secretory granules that contain von Willebrand factor and P-selectin, molecules that regulate hemostasis and inflammation, respectively. The presence of CD63/LAMP3 in the limiting membrane of WPBs has led to their classification as lysosome-related organelles. Many lysosome-related organelles contain intraluminal vesicles (ILVs) enriched in CD63 that are secreted into the extracellular environment during cell activation to mediate intercellular communication.

View Article and Find Full Text PDF

Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs.

View Article and Find Full Text PDF

Cellular niches in adult tissue can harbour dysregulated microenvironments that become the driving force behind disease progression. The major environmental change when metastatic cells arrive in the bone is the destruction of mineralized type I collagen matrix. Once metastatic niches establish in bone, the invading tumour cells initiate a vicious cycle of osteolytic lesion formation via the dysregulation of paracrine signals and uncoupling of normal bone resorption and production.

View Article and Find Full Text PDF

The polarization and migration of eukaryotic cells are fundamental processes for the development and maintenance of a tissue. These aspects gain especial interest when it comes to stem and progenitor cells in the way that their manipulation might open new avenues in regenerative therapy. In recent years, novel biological facets of migrating hematopoietic stem cells were revealed by several groups, including ours.

View Article and Find Full Text PDF

The differentiation of stem cells is a fundamental process in cell biology and understanding its mechanism might open a new avenue for therapeutic strategies. Using an ex vivo co-culture system consisting of human primary haematopoietic stem and progenitor cells growing on multipotent mesenchymal stromal cells as a feeder cell layer, we describe here the exosome-mediated release of small membrane vesicles containing the stem and cancer stem cell marker prominin-1 (CD133) during haematopoietic cell differentiation. Surprisingly, this contrasts with the budding mechanism underlying the release of this cholesterol-binding protein from plasma membrane protrusions of neural progenitors.

View Article and Find Full Text PDF

Understanding the physiological migration of hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated the role of the Rho kinase pathway in the morphology and migration of hematopoietic progenitors using an ex vivo co-culture consisting of human primary CD34(+) progenitors and mesenchymal stromal cells. The addition of the Rho kinase inhibitor Y-27632 led to the abolishment of the uropod and microvillar-like structures of hematopoietic progenitors, concomitant with a redistribution of proteins found therein (prominin-1 and ezrin).

View Article and Find Full Text PDF

Background Aims: It is unclear whether the plastic-adherent multipotent mesenchymal stromal cells (MSC) isolated from human bone marrow (BM) represent a uniform cell population or are heterogeneous in terms of cell-surface constituents and hence functionality.

Methods: We investigated the expression profile of certain biofunctional lipids by plastic-adherent MSC, focusing particularly on two membrane microdomain (lipid raft)-associated monosialogangliosides, GM1 and GM3, using indirect confocal laser scanning fluorescence microscopy and flow cytometry.

Results: Phenotypically, we observed a differential expression where certain MSC subsets exhibited GM1, GM3 or both at the plasma membrane.

View Article and Find Full Text PDF

Background: Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and 'stemness' of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion.

View Article and Find Full Text PDF

Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation.

View Article and Find Full Text PDF

Prominin-1 (alias CD133) has received considerable interest because of its expression by several stem and progenitor cells originating from various sources, including the neural and hematopoietic systems. As a cell surface marker, prominin-1 is now used for somatic stem cell isolation. Its expression in cancer stem cells has broadened its clinical value, as it might be useful to outline new prospects for more effective cancer therapies by targeting tumor-initiating cells.

View Article and Find Full Text PDF