Publications by authors named "Ana-Rita Matos"

Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition.

View Article and Find Full Text PDF

The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv.

View Article and Find Full Text PDF

Introduction: Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply.

View Article and Find Full Text PDF

The apoplast is the plant compartment present between the plasma membrane and the cuticle, comprised of the cell wall and the extracellular spaces where the "secretomes" are released and where the apoplastic fluid circulates. Within the many functions attributed to this compartment, its role in plant-pathogen interactions is irrefutable. It is the major point where plant and pathogen secretomes come in contact and several plant and pathogenic secreted proteins and small molecules present in this compartment are already cataloged in the literature.

View Article and Find Full Text PDF

Superior vena cava syndrome (SVCS) is caused by any obstruction to the superior vena cava (SVC); the most common causes are malignancy and extrinsic compression. The use of medical devices, such as central venous catheters, poses an important risk factor, as they cause changes in the blood flow and in the vessel wall. This report describes a case of a 70-year-old male with an implantable central venous port, due to previous neoplastic disease, as the cause of the SVCS.

View Article and Find Full Text PDF

The anticipated rise in the length, frequency, and intensity of heatwaves (HW) in the Mediterranean region poses a danger to the crops, as these brief but high-intensity thermal stress events halt plant productivity. This arises the need to develop new eco-friendly sustainable strategies to overcome food demand. Halophytes such as Salicornia ramosissima appear as cash crop candidates, alongside with new biofertilization approaches using Plant Growth Promoting Bacteria (PGPB).

View Article and Find Full Text PDF

Amid climate change, heatwave events are expected to increase in frequency and severity. As a result, yield losses in viticulture due to heatwave stress have increased over the years. As one of the most important crops in the world, an eco-friendly stress mitigation strategy is greatly needed.

View Article and Find Full Text PDF

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8 T cell percentages, however, the proportion of blood CD8 T cells expressing the mucosal homing receptor β7 is low in PASC patients.

View Article and Find Full Text PDF

In this work, we studied the combined effect of increased temperature and atmospheric CO, salt and drought stress, and inoculation with plant-growth-promoting rhizobacteria (PGPR) on the growth and some nutritional parameters of the edible halophyte . We found that the increase in temperature and atmospheric CO, combined with salt and drought stresses, led to important changes in fatty acids (FA), phenols, and oxalate contents, which are compounds of great importance for human health. Our results suggest that the lipid profile will change in a future climate change scenario, and that levels of oxalate and phenolic compounds may change in response to salt and drought stress.

View Article and Find Full Text PDF

L. is highly susceptible to the biotrophic pathogen . To control the downy mildew disease, several phytochemicals are applied every season.

View Article and Find Full Text PDF

The increased use of antidepressants, along with their increased occurrence in aquatic environments, is of concern for marine organisms. Although these pharmaceutical compounds have been shown to negatively affect marine diatoms, their mode of action in these non-target, single-cell phototrophic organisms is yet unknown. Using a Fourier-transform ion cyclotron-resonance mass spectrometer (FT-ICR-MS) we evaluated the effects of fluoxetine in the metabolomics of the model diatom , as well as the potential use of the identified metabolites as exposure biomarkers.

View Article and Find Full Text PDF

Sodium Dodecyl Sulfate (SDS) is an anionic surfactant, extensively used in detergents, household and personal care products, as well as in industrial processes. The present study aimed to disclose the potential toxicological effects of SDS exposure under environmentally relevant concentrations (0, 0.1, 1, 3, and 10 mg L) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems, and energy balance) of two marine autotrophs: the diatom and the macroalgae .

View Article and Find Full Text PDF

The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 μg·L) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of , a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 μg·L, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 μg·L).

View Article and Find Full Text PDF

The present-day COVID-19 pandemic has led to the increasing daily use of antimicrobials worldwide. Triclosan is a manmade disinfectant chemical used in several consumer healthcare products, and thus frequently detected in surface waters. In the present work, we aimed to evaluate the effect of triclosan on diatom cell photophysiology, fatty acid profiles, and oxidative stress biomarkers, using the diatom as a model organism.

View Article and Find Full Text PDF

Estuaries have long been preferred areas of human settlement, where multiple anthropogenic activities take place, which have contributed to a significant decrease in environmental quality of these ecosystems. Accordingly, environmental monitoring and management have long relied on the development of tools that summarize and simplify complex information and provide direct interpretation of quality status. Here, the fatty acid profiles of three abundant estuarine species, namely Hediste diversicolor, Carcinus maenas and Pomatoschistus microps, were used to develop and validate a multimetric index, based on the Euclidean dissimilarities of profiles between sites, in response to contamination gradient in a large urban estuary.

View Article and Find Full Text PDF

Coastal seagrass meadows provide a variety of essential ecological and economic services, including nursery grounds, sediment stabilization, nutrient cycling, coastal protection, and blue carbon sequestration. However, these ecosystems are highly threatened by ongoing climatic change. This study was aimed to understand how the dwarf eelgrass leaf lipid landscapes are altered under predicted ocean warming (+4 °C) and hypercapnic (ΔpH 0.

View Article and Find Full Text PDF

The introduction of waste containing heavy metals into the marine environment has been increasing for the past few decades, yet there are still several pending questions regarding how it impacts aquatic fauna. This study compared the effects of zinc exposure in its ionic- and nanoparticle forms on the mussel Mytilus galloprovincialis and sampled at different time-points. Zinc accumulation was observable after one week.

View Article and Find Full Text PDF

Marine macroalgae have been increasingly targeted as a source of bioactive compounds to be used in several areas, such as biopesticides. When harvesting invasive species, such as , for this purpose, there is a two-folded opportunity: acquiring these biomolecules from a low-cost resource and controlling its spreading and impacts. The secondary metabolites in this seaweed's exudate have been shown to significantly impact the physiology of species in the ecosystems where it invades, indicating a possible biocidal potential.

View Article and Find Full Text PDF

Agriculture is facing major constraints with the increase of global warming, being drought a major factor affecting productivity. Soybean (Glycine max) is among the most important food crops due to the high protein and lipid content of its seeds despite being considerably sensitive to drought. Previous knowledge has shown that drought induces a severe modulation in lipid and fatty acid content of leaves, related to alteration of membrane structure by lipolytic enzymes and activation of signalling pathways.

View Article and Find Full Text PDF

Land salinization, resulting from the ongoing climate change phenomena, is having an increasing impact on coastal ecosystems like salt marshes. Although halophyte species can live and thrive in high salinities, they experience differences in their salt tolerance range, being this a determining factor in the plant distribution and frequency throughout marshes. Furthermore, intraspecific variation to NaCl response is observed in high-ranging halophyte species at a population level.

View Article and Find Full Text PDF

The domesticated species L. harbours many cultivars throughout the world that present distinctive phenology and grape quality. Not only have the grapes been used for human consumption, but the leaves are also used as a source of bioactive compounds and are present in the diets of several Mediterranean countries.

View Article and Find Full Text PDF

Grapevine downy mildew, caused by the biotrophic oomycete , is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling.

View Article and Find Full Text PDF

Transitional ecosystems are among the most degraded ecosystems worldwide, with several groups of organisms investigated for their reliability as biological indicators of human-driven disturbances. Recently non-traditional biochemical biomarkers such as an individual's fatty acids profile have been identified as promising tools for assessing contaminant exposure. In this work, two abundant Atlantic benthic macroalgae (Ulva lactuca and Fucus vesiculosus species) were surveyed in three mudflat areas of the highly urbanized Tejo estuary, with increasing anthropogenic disturbance degrees (Alcochete, Rosário and Seixal mudflats, increasing in contamination by this order) and their fatty acids evaluated as potential biomarkers for exposure to contaminants known to have toxic effects on biota.

View Article and Find Full Text PDF

Grapevine (Vitis vinifera L.) is prone to fungal and oomycete diseases. Downy and powdery mildews and grey mold, are caused by Plasmopara viticola, Erisiphe necator and Botrytis cinerea, respectively.

View Article and Find Full Text PDF

Hyper-inflammatory responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major cause of disease severity and death. Predictive prognosis biomarkers to guide therapeutics are critically lacking. Several studies have indicated a "cytokine storm" with the release of interleukin-1 (IL-1), IL-6, and IL-8, along with tumor necrosis factor alpha (TNFα) and other inflammatory mediators.

View Article and Find Full Text PDF