Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca -activated K -channels.
View Article and Find Full Text PDFAim: Myocardial infarction remains the leading cause of heart failure. The adult human heart lacks the capacity to undergo endogenous regeneration. New blood vessel growth is integral to regenerative medicine necessitating a comprehensive understanding of the pathways that regulate vascular regeneration.
View Article and Find Full Text PDFAims: Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution.
Methods And Results: We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions.
Fetal growth restriction (FGR) is associated with decreased insulin secretory capacity and decreased insulin sensitivity in muscle in adulthood. We investigated whether intra-amniotic IGF-I treatment in late gestation mitigated the adverse effects of FGR on the endocrine pancreas and skeletal muscle at 18 mo of age. Singleton-bearing ewes underwent uterine artery embolization between 103 and 107 days of gestational age, followed by 5 once-weekly intra-amniotic injections of 360-µg IGF-I (FGRI) or saline (FGRS) and were compared with an unmanipulated control group (CON).
View Article and Find Full Text PDFMitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O ) pregnancy ± MitoQ (500 μM day ) in the maternal drinking water.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have structural and functional roles in development and disease. We have previously shown that the LINC00961/SPAAR (small regulatory polypeptide of amino acid response) locus regulates endothelial cell function, and that both the lncRNA and micropeptide counter-regulate angiogenesis. To assess human cardiac cell SPAAR expression, we mined a publicly available scRNSeq dataset and confirmed LINC00961 locus expression and hypoxic response in a murine endothelial cell line.
View Article and Find Full Text PDFIn ST-segment elevation myocardial infarction of both patients and mice, there was a decline in blood eosinophil count, with activated eosinophils recruited to the infarct zone. Eosinophil deficiency resulted in attenuated anti-inflammatory macrophage polarization, enhanced myocardial inflammation, increased scar size, and deterioration of myocardial structure and function. Adverse cardiac remodeling in the setting of eosinophil deficiency was prevented by interleukin-4 therapy.
View Article and Find Full Text PDFFetal growth restriction (FGR) is associated with compromised growth and metabolic function throughout life. Intrauterine therapy of FGR with intra-amniotic insulin-like growth factor-1 (IGF1) enhances fetal growth and alters perinatal metabolism and growth in a sex-specific manner, but the adult effects are unknown. We investigated the effects of intra-amniotic IGF1 treatment of FGR on adult growth and body composition, adrenergic sensitivity, and glucose-insulin axis regulation.
View Article and Find Full Text PDFAims: Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet understanding of their contribution to endothelial cell (EC) function is incomplete. We identified lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded micropeptide, small regulatory polypeptide of amino acid response (SPAAR), in EC function.
Methods And Results: Deep sequencing of human embryonic stem cell differentiation to ECs was combined with Encyclopedia of DNA Elements (ENCODE) RNA-seq data from vascular cells, identifying 278 endothelial enriched genes, including 6 lncRNAs.
The placenta responds to adverse environmental conditions by adapting its capacity for substrate transfer to maintain fetal growth and development. Early-onset hypoxia effects on placental morphology and activation of the unfolded protein response (UPR) were determined using an established rat model in which fetal growth restriction is minimized. We further established whether maternal treatment with a mitochondria-targeted antioxidant (MitoQ) confers protection during hypoxic pregnancy.
View Article and Find Full Text PDFIschemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably myocardial infarction and stroke. While reperfusion of ischemic tissue is essential for survival, it also initiates cell death through generation of mitochondrial reactive oxygen species (ROS). Recent work has revealed a novel pathway underlying ROS production at reperfusion in vivo in which the accumulation of succinate during ischemia and its subsequent rapid oxidation at reperfusion drives ROS production at complex I by reverse electron transport (RET).
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
June 2015
Background: Stroke is the third most common cause of death and a major cause of chronic disability in New Zealand. Linked to risk factors that develop across the life-course, stroke is considered to be largely preventable. This study assessed the awareness of stroke risk, symptoms, detection, and prevention behaviors in an urban New Zealand population.
View Article and Find Full Text PDFOptimal fetal growth is important for a healthy pregnancy outcome and also for lifelong health. Fetal growth is largely regulated by fetal nutrition, and mediated via the maternal and fetal glucose/insulin/insulin-like growth factor axes. Fetal nutrition may reflect maternal nutrition, but abnormalities of placental function can also affect fetal growth, as the placenta plays a key intermediary role in nutritional signalling between mother and fetus.
View Article and Find Full Text PDF