Publications by authors named "Ana-Citlali Gradilla"

The function of Hedgehog (Hh) as a morphogen results from its long-distance distribution from producing to neighboring receiving cells within the developing tissue. This signal distribution enables, for example, the formation of a concentration gradient eliciting distinct cellular responses that will give rise to spatial patterning. Hh is a lipid modified protein and its dispersion is better guaranteed through cytonemes, cell protrusions that allow direct cell membrane contact and signal transfer at a distance.

View Article and Find Full Text PDF
Article Synopsis
  • Hedgehog (Hh) signaling molecules are crucial for development, stem cell maintenance, and cancer progression, with their distribution in Drosophila mediated by structures called cytonemes.
  • The study reveals that SNARE proteins play a key role in the placement of the Patched (Ptc) receptor at these contact points, involving a distinct vesicle fusion process that utilizes multivesicular bodies (MVBs).
  • Blocking Ptc transport and fusion impacts its availability for Hh reception, leading to a more flattened and prolonged Hh gradient crucial for signaling.
View Article and Find Full Text PDF

During development, specialized cells produce signals that distribute among receiving cells to induce a variety of cellular behaviors and organize tissues. Recent studies have highlighted cytonemes, a type of specialized signaling filopodia that carry ligands and/or receptor complexes, as having a role in signal dispersion. In this Primer, we discuss how the dynamic regulation of cytonemes facilitates signal transfer in complex environments.

View Article and Find Full Text PDF

Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules.

View Article and Find Full Text PDF

Spatial organization of membrane domains within cells and cells within tissues is key to the development of organisms and the maintenance of adult tissue. Cell polarization is crucial for correct cell-cell signalling, which, in turn, promotes cell differentiation and tissue patterning. However, the mechanisms linking internal cell polarity to intercellular signalling are just beginning to be unravelled.

View Article and Find Full Text PDF

Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events.

View Article and Find Full Text PDF

The Hedgehog signalling pathway is crucial for development, adult stem cell maintenance, cell migration and axon guidance in a wide range of organisms. During development, the Hh morphogen directs tissue patterning according to a concentration gradient. Lipid modifications on Hh are needed to achieve graded distribution, leading to debate about how Hh is transported to target cells despite being membrane-tethered.

View Article and Find Full Text PDF

Hedgehog (Hh) signalling is important in development, stem cell biology and disease. In a variety of tissues, Hh acts as a morphogen to regulate growth and cell fate specification. Several hypotheses have been proposed to explain morphogen movement, one of which is transport along filopodia-like protrusions called cytonemes.

View Article and Find Full Text PDF

Hedgehog (Hh) as morphogen directs cell differentiation during development activating various target genes in a concentration dependent manner. The mechanisms that permit controlled Hh dispersion and gradient formation remain controversial. New research in the Drosophila wing disc epithelium has revealed a crucial role of Hh recycling for its release and transportation from source cells.

View Article and Find Full Text PDF

Cell-to-cell communication is vital for animal tissues and organs to develop and function as organized units. Throughout development, intercellular communication is crucial for the generation of structural diversity, mainly by the regulation of differentiation and growth. During these processes, several signaling molecules function as messengers between cells and are transported from producing to receptor cells.

View Article and Find Full Text PDF

Hedgehog can signal both at a short and long-range, and acts as a morphogen during development in various systems. We studied the mechanisms of Hh release and spread using the Drosophila wing imaginal disc as a model system for polarized epithelium. We analyzed the cooperative role of the glypican Dally, the extracellular factor Shifted (Shf, also known as DmWif), and the Immunoglobulin-like (Ig-like) and Fibronectin III (FNNIII) domain-containing transmembrane proteins, Interference hedgehog (Ihog) and its related protein Brother of Ihog (Boi), in the stability, release and spread of Hh.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone (20E) regulates gene transcription through the heterodimeric nuclear receptor composed of ecdysone receptor (EcR) and Ultraspiracle (USP). The EcR gene encodes three protein isoforms--A, B1, and B2--with variant N-terminal domains that mediate tissue and developmental stage-specific responses to 20E. Ariadne-1a is a conserved member of the RING finger family of ubiquitin ligases first identified in Drosophila melanogaster.

View Article and Find Full Text PDF

Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain.

View Article and Find Full Text PDF