Biotechnol Appl Biochem
March 2014
An acoustic quartz crystal microbalance (QCM) was used to signal and follow the cell‑adhesion process of epithelial cells [human embryonic kidney(HEK) 293T and cervical cancer (HeLa) and fibroblasts [African Green Monkey kidney cells (COS-7)] onto gold surfaces. Cells were applied on the sensor and grown under serum-free and serum-supplemented culture media. The sensor resonance frequency (Δf) and motional resistance (ΔR) variations were measured during cell growth to monitor cell adhesion processes.
View Article and Find Full Text PDFBiocompatibility of polymers is an important parameter for the successful application of polymers in tissue engineering. In this work, quartz crystal microbalance (QCM) devices were used to follow the adhesion of NIH 3T3 fibroblasts to QCM surfaces modified with fibronectin (FN) and poly-D-lysine (PDL). The variations in sensor resonant frequency (Δf) and motional resistance (ΔR), monitored as the sensor signal, revealed that cell adhesion was favored in the PDL-coated QCMs.
View Article and Find Full Text PDFPiezoelectric sensors are acoustic sensors that enable the selective and label-free detection of biological events in real time. These sensors generate acoustic waves and utilize measurements of the variation of the wave propagation properties as a signal for probing events at the sensor surface. Quartz crystal microbalance (QCM) devices, the most widespread acoustic resonators, allow the study of viscoelastic properties of matter, the adsorption of molecules, or the motility of living cells.
View Article and Find Full Text PDF